MRF24WB0MA/MRF24WB0MB
Data Sheet

2.4 GHz, IEEE Std. 802.11b™
RF Transceiver Module
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademark

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MIWI, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omnicent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PIcKit, PIcTail, REAL ICE, rILAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010 - 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
MRF24WB0MA/MRF24WB0MB Data Sheet
2.4 GHz IEEE Std. 802.11b™

Features:
- IEEE Std. 802.11-compliant RF Transceiver
- Serialized unique MAC address
- Data Rate: 1 and 2 Mbps
- IEEE Std. 802.11b/g/n compatible
- Small size: 21mm x 31mm 36-pin Surface Mount Module
- Integrated PCB antenna (MRF24WB0MA)
- External antenna option (MRF24WB0MB) with ultra miniature coaxial (U.FL) connector
- Range: up to 400m (1300 ft.)
- Easy integration into final product – accelerates product development, provides quicker time to market
- Radio regulation certification for United States (FCC), Canada (IC), Europe (ETSI) and Japan (ARIB)
- Wi-Fi® certified (WFA ID: WFA7150)
- Designed for use with Microchip microcontroller families (PIC18, PIC24, dsPIC33, and PIC32) with downloadable Microchip TCP/IP Stack

Operational:
- Single operating voltage: 2.7V–3.6V (3.3V typical)
- Temperature Range: -20° C to +85° C extended commercial
- Simple, four-wire SPI interface with interrupt
- Low-current consumption:
 - RX mode – 85 mA (typical)
 - TX mode – 154 mA (+10 dBm typical)
 - Sleep – 250 µA (typical)
 - Hibernate – <0.1 µA (typical)

RF/Analog Features:
- ISM Band 2.400–2.484 GHz operation
- 14 Channels selectable individually or domain-restricted
- DSSS Modulation
- Data Rate – 1000 kbps
- -91 dBm Typical sensitivity at 1 Mbps
- +10 dBm Typical output power with control
- Integrated low phase noise VCO, RF frequency synthesizer, PLL loop filter and PA
- Digital VCO and filter calibration
- Integrated RSSI ADC and I/Q DACs, RSSI readings available to host
- Balanced receiver and transmitter characteristics for low power consumption

MAC/Baseband Features:
- Hardware CSMA/CA access control, automatic ACK, and FCS creation and checking
- Automatic MAC packet retransmit
- Hardware Security Engine for AES and RC4-based ciphers
- Supports 802.1x, 802.1i security: WEP, WPA-PSK, and WPA-2-PSK.

Applications:
- Utility and Smart Energy
 - Thermostats
 - Smart Meters
 - White Goods
 - HVAC
- Consumer Electronics
 - Remote Control
 - Internet Radio
 - Home Security
 - Toys
- Industrial Controls
 - Chemical Sensors
 - HVAC
 - Security Systems
 - M2M Communication
- Remote Device Management
 - Location and Asset Tracking
 - Automotive
 - Code Update
- Retail
 - POS Terminals
 - Wireless Price Tags
 - Digital Remote
- Medical, Fitness, and Health care
 - Glucose Meters
 - Fitness Equipment
 - Patient Asset Tracking
Pin Diagram

Note: Antenna connector on MRF24WB0MB only.
Table of Contents

1.0 Devices Overview ... 7
2.0 Circuit Description ... 13
3.0 Regulatory Approval ... 23
4.0 Electrical Characteristics ... 27
Appendix A: Revision History ... 31
The Microchip Web Site ... 33
Customer Change Notification Service .. 33
Customer Support .. 33
Reader Response .. 34
Product Identification System ... 35

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 DEVICES OVERVIEW

The MRF24WB0MA and MRF24WB0MB are low-power, 2.4 GHz, IEEE Std. 802.11-compliant, surface mount modules with all associated RF components – crystal oscillator, bypass and bias passives with integrated MAC, baseband, RF and power amplifier, and built-in hardware support for AES, and TKIP (WEP, WPA, WPA2 security). The integrated module design frees the designer from RF and antenna design tasks and regulatory compliance testing, ultimately providing quicker time to market.

The MRF24WB0MA module is approved for use with the integrated PCB meander antenna.

The MRF24WB0MB comes with an ultra miniature coaxial connector (U.FL) and is approved for use with a list of pre-certified antennas. See Section 2.8, External Antenna, for specific recommendations.

The MRF24WB0MA/MRF24WB0MB modules are designed to be used with Microchip’s TCP/IP software stack. The software stack has an integrated driver that implements the API that is used in the modules for command and control, and for management and data packet traffic.

The Microchip TCP/IP software stack is available in the free Microchip Application Libraries download (including example applications and source code) from the Microchip web site, http://www.microchip.com/wireless.

The combination of the module and a PIC running the TCP/IP stack results in support for IEEE Standard 802.11 and IP services. This allows, the immediate implementation of a wireless web server.

The MRF24WB0MA/MRF24WB0MB modules have received regulatory approvals for modular devices in the United States (FCC), Canada (IC), and Europe (ETSI). The modular approval removes the need for expensive RF and antenna design, and allows the end user to place the modules inside a finished product and not require regulatory testing for an intentional radiator (RF transmitter). They also have Radio Type Approval Certification for Japan. See Section 3.0, Regulatory Approval, for the specific requirements that should be adhered to by the integrator.

1.1 Interface Description

The block diagram in Figure 1-1 represents a MRF24WB0MA/MRF24WB0MB module. It interfaces to Microchip PIC18, PIC24, dsPIC33, or PIC32 microcontrollers through a four-wire serial slave SPI interface – interrupt, hibernate, reset, power and ground signals. The module runs on a single supply voltage of nominally 3.3V. It also supports optional JTAG and serial debug for testability. The debug port operates at 3.3V and requires a level shifter for operation with RS-232 devices. Figure 1-2 shows a simplified example connection between a Microchip PIC MCU and the module. Table 1-1 lists the pin descriptions.

Data communications with the MRF24WB0MA/MRF24WB0MB are through the SPI interface that is detailed in Section 2.0, Circuit Description. The Microchip PIC microcontroller communicates with the module through a command API from within the Microchip TCP/IP stack. The command API is detailed in the Microchip TCP/IP stack online help that is included in the free Microchip Application Libraries download.
FIGURE 1-1: MRF24WB0MA/MRF24WB0MB BLOCK DIAGRAM

MRF24WB0MA 2.4 GHz IEEE Std. 802.11b RF Transceiver Module

- PCB Antenna (MRF24WB0MA)
- Matching Circuitry
- Flash
- AES, TKIP Encryption Accelerator
- Interface
- 2.4 GHz Transceiver
- Power Amplifier
- RAM
- ROM
- SPI
- Digital I/O
- Interrupt
- Power
- JTAG
- Debug
- Reset
- Hibernate

FIGURE 1-2: MICROCONTROLLER TO MRF24WB0MA/MRF24WB0MB INTERFACE

MRF24WB0Mx
- External Antenna (MRF24WB0MB)
- +3.3V (Typ)
- GND
- CS
- SDI
- SDO
- SCK
- INT
- VDD
- HIBERNATE
- GND
- WP
- RESET

PIC Microcontroller
- I/O
- SDO
- SDI
- SCK
- INTx
- I/O
- I/O
- I/O
TABLE 1-1: Pin Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>3</td>
<td>JTAGTDO</td>
<td>O</td>
<td>JTAG test data output</td>
</tr>
<tr>
<td>4</td>
<td>JTAGTCK</td>
<td>I: Constant(1)</td>
<td>JTAG clock input</td>
</tr>
<tr>
<td>5</td>
<td>JTAGTMS</td>
<td>I</td>
<td>JTAG mode input</td>
</tr>
<tr>
<td>6</td>
<td>JTAGTDI</td>
<td>I</td>
<td>JTAG test data input</td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
<td>I: Constant(1)</td>
<td>Module Reset input</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>9</td>
<td>JTAGRST</td>
<td>I</td>
<td>JTAG Reset input (optional; see Section 2.0, Circuit Description)</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>13</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>14</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>16</td>
<td>WP(2)</td>
<td>I</td>
<td>Write protect (this pin is used to enable FLASH update)</td>
</tr>
<tr>
<td>17</td>
<td>VDD</td>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>20</td>
<td>HIBERNATE</td>
<td>I</td>
<td>Hibernate mode enable (high input will disable the module)</td>
</tr>
<tr>
<td>21</td>
<td>JTAGEN</td>
<td>I</td>
<td>JTAG test enable</td>
</tr>
<tr>
<td>22</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>23</td>
<td>CS</td>
<td>I: Constant(1)</td>
<td>SPI Chip Select input, constant drive or pull-up required</td>
</tr>
<tr>
<td>24</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>26</td>
<td>DEBUGRX</td>
<td>I</td>
<td>Serial debug port input (see Section 2.0, Circuit Description)</td>
</tr>
<tr>
<td>27</td>
<td>DEBUGTX</td>
<td>O</td>
<td>Serial debug port output (see Section 2.0, Circuit Description)</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>29</td>
<td>VDD</td>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>30</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>31</td>
<td>NC</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>32</td>
<td>SDO</td>
<td>O</td>
<td>SPI data out</td>
</tr>
<tr>
<td>33</td>
<td>INT</td>
<td>O</td>
<td>Interrupt output (open drain – requires a pull-up)</td>
</tr>
<tr>
<td>34</td>
<td>SCK</td>
<td>I</td>
<td>SPI clock input</td>
</tr>
<tr>
<td>35</td>
<td>SDI</td>
<td>I</td>
<td>SPI data in</td>
</tr>
<tr>
<td>36</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Legend: Pin type abbreviation: P = Power input, I = Input, O = Output, NC = Do Not Connect

Note 1: Signals of Type “I: Constant” must either be constantly driven by the host or have a pull-up or pull-down (in case the host is likely to tri-state the signal during power down modes). The constant drive is used to ensure defined operation of the part and to minimize leakage current during low power modes.

Note 2: WP is used as write-protect for the internal module SPI Flash. For production use, this pin should be pulled low. This pin can be controlled by the host microcontroller to enable in field Flash updates.
1.2 Mounting Details

The MRF24WB0MA/MRF24WB0MB is a surface mountable module. Module dimensions are shown in Figure 1-3. The module Printed Circuit Board (PCB) is 1 mm thick with castellated mounting points on two sides.

FIGURE 1-3: MRF24WB0MA/MRF24WB0MB MODULE PHYSICAL DIMENSIONS

Note: Antenna connector on MRF24WB0MB only.
Figure 1-4 shows the recommended host PCB footprint for the module. The MRF24WB0MA has an integrated PCB antenna. For best performance, follow the mounting details shown in Figure 1-4.

For best performance, mount the module on the PCB without metal obstructions in the keep out area of Figure 1-4. The antenna is tuned to have FR4 PCB material underneath the module. Do not “cut-out” host PCB material under the antenna.

FIGURE 1-4: RECOMMENDED HOST PCB FOOTPRINT

![Recommended Host PCB Footprint Diagram]

Note 1: The "Note 1" demarcation specifies the host PCB copper plane keep-out area on underlying board layers. It is alright to route surface escape traces in this area.
Figure 1-5 illustrates the module reflow profile that is recommended for mounting the device onto the host PCB.

FIGURE 1-5: RECOMMENDED MODULE REFLOW PROFILE AND SETPOINTS

![Module Reflow Profile Diagram](image)

TABLE 1-2: MODULE REFLOW PROFILE\(^{(1)}\)

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>180°</td>
<td>180°</td>
<td>200°</td>
<td>200°</td>
<td>200°</td>
<td>220°</td>
<td>265°</td>
<td>270°</td>
</tr>
</tbody>
</table>

Note 1: Conveyor Speed: 90 cm/min
2.0 CIRCUIT DESCRIPTION

The MRF24WB0MA/MRF24WB0MB interfaces to Microchip PIC18, PIC24, dsPIC33, and PIC32 microprocessors with a minimal of external components through digital-only connections. This section details use of the module, starting with an example host connection as shown in Figure 2-1.

2.1 Schematic

FIGURE 2-1: MRF24WB0MA/MRF24WB0MB EXAMPLE APPLICATION SCHEMATIC

2.2 Power-On Sequence

The internal regulators for the digital and analog core power supplies are disabled by driving the Hibernate pin high. Figure 2-2 shows the power up sequence for the MRF24WB0MA/MRF24WB0MB.

There is an internal Power-on-Reset (POR) circuit which keeps the module in reset until VDD is within specification. The Hibernate and Reset signals are also used to control startup. In Figure 2-2, section A is controlled by the internal POR and section B is an allowance for the SPI bus to stabilize when the module supplies are enabled. Once Hibernate is disabled, the host software provides 1mS of startup to allow the SPI to stabilize. This time is pre-programmed into the host driver, and may need to be increased if insufficient initial drive current is not provided to the MRF24WB0M module. Section C is the driver controlled release from Reset period. This takes approximately 300 mS and is monitored by the stack driver. No additional time needs to be provided by user software for startup.
FIGURE 2-2: MRF24WB0MA/MRF24WB0MB POWER-ON SEQUENCE TIMING
2.3 Power States

The MRF24WB0MA/MRF24WB0MB has several power states. These are Hibernate, Sleep and Active (two sub-states), as shown in Figure 2-3. The selection of power state directly affects system behavior, and overall power consumption or battery life. There is also a “Standby” state that is not user-controlled.

2.3.1 Hibernate State

An “Off” state is defined as no power applied to the device. The Hibernate mode is the closest to controlled off that the module can approach. It is controlled through the HIBERNATE pin (high input puts the module into Hibernate). When in Hibernate, the module only consumes leakage current, but does not maintain state. Hibernate has to be fully controlled by the PIC MCU and requires the TCP/IP stack to restart on an awake.

The module contains about 70µF of internal bulk capacitance. Supplies should be provisioned to supply sufficient charge on release of hibernate for desired start time or sufficient delay must be provided in software after hibernate release and before releasing reset.

This state provides the best battery life for embedded products. Entering Hibernate for intervals of less than 30 seconds is not likely to save power. Battery life expectation can be more than a year for devices operating on AA cells that would be in Hibernate except to wake up every hour for a small data transfer (<500 Bytes).

2.3.2 Sleep State

The Sleep state is a low power dynamic state that automatically implements the 802.11 Power Save feature. In this mode, if enabled, the module will enter Power Save mode when all activity is complete.

The module will wake autonomously to any PIC intervention so it can check DTIM beacons from the Access Point. If any traffic is listed as queued for the module, then it will awaken and get the data from the Access Point on the next possible opportunity. When data is acquired, the module will interrupt the PIC microcontroller on a normal “data available” indication. If no data is available on a DTIM check, the module reenters the Power Save state until the next DTIM. The DTIM interval is programmed at the Access Point. This state can provide “as if on” behavior of the radio with a significant power savings versus “always on”. The battery life expectation of this mode is several days to several weeks. This mode is characterized by a very low latency (as low as 200 mS) to begin data transfer from the low power state.

2.3.3 Active State

The Active state is identified as one of two states where the radio circuitry is fully on. The two active states are the Receive state (RX ON) and the Transmit state (TX ON).

2.3.4 Standby State

The Standby state is not user-controlled but is noted as it helps identify and track certain operations of the module during power tracing.

<table>
<thead>
<tr>
<th>State</th>
<th>VDD</th>
<th>CS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0V</td>
<td>0V</td>
<td>Power is completely disconnected</td>
</tr>
<tr>
<td>Hibernate</td>
<td>3.3V</td>
<td>3.3V</td>
<td>All internal power regulators are OFF – enabled by HIBERNATE pin</td>
</tr>
<tr>
<td>Sleep</td>
<td>3.3V</td>
<td>0V</td>
<td>Enabled by TCP/IP driver</td>
</tr>
<tr>
<td>RX ON</td>
<td>3.3V</td>
<td>0V</td>
<td>Receive circuits are on and receiving</td>
</tr>
<tr>
<td>TX ON</td>
<td>3.3V</td>
<td>0V</td>
<td>Transmit circuits are on and transmitting</td>
</tr>
<tr>
<td>Standby</td>
<td>3.3V</td>
<td>0V</td>
<td>State machine transition state only – not user controlled</td>
</tr>
</tbody>
</table>
2.4 JTAG Interface

Joint Test Action Group (JTAG) is the common name used for the IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-Scan Architecture for test access ports that are used for testing printed circuit boards using boundary scan. The MRF24WB0MA/MRF24WB0MB supports JTAG boundary scan. The JTAG port provides the optional hardware JTAG Reset input, JTAG_RST. JTAG_EN and JTAG_RST need to be driven high to enable JTAG mode. JTAG should not be enabled during normal functional operation. This function affects power state current.

2.5 Debug Serial Interface

The MRF24WB0MA/MRF24WB0MB incorporates a Transmit Data pin (DEBUG_TX) and a Receive Data pin (DEBUG_RX) for serial debugging purposes. These pins can be connected to commercially available RS-232 line drivers/receivers with appropriate external level shifters. The serial interface operates at 19200, 8, N, 1, N.
2.6 SPI Interface

The slave Serial Peripheral Interface (SPI) is used to interface with the host PIC microcontroller. The slave SPI interface works with the Interrupt line (INT). When data is available for the PIC microcontroller during operation, the INT line is asserted (logic low) by the MRF24WB0MA/MRF24WB0MB module. The INT line is de-asserted (logic high) by the MRF24WB0MA/MRF24WB0MB after the data is transferred to the host PIC microcontroller. The SPI SCK frequency can be up to 25 MHz.

The slave SPI interface implements the \([\text{CPOL}=0; \text{CPHA}=0]\) and \([\text{CPOL}=1; \text{CPHA}=1]\) modes (0 and 3) of operation. That is, data is clocked in on the first rising edge of the clock after Chip Select (CS) is asserted. Data is placed on the bus with most significant bit (MSb) first.

The CS pin must be toggled with transfer blocks and cannot be held low permanently. The falling edge of CS is used to indicate the start of a transfer. The rising edge of CS is used to indicate the completion of a transfer.

Figure 4-1 in Section 4.0, Electrical Characteristics shows the SPI timing diagram. Table 4-7 details the SPI timing AC characteristics.

2.7 PCB Antenna

For the MRF24WB0MA, the PCB antenna is fabricated on the top copper layer and covered in solder mask. The layers below the antenna have no copper trace. It is recommended that the module be mounted on the edge of the host PCB. It is permitted for PCB material to be below the antenna structure of the module as long as no copper traces or planes are on the host PCB in that area. For best performance, place the module on the host PCB according to the details shown in Figure 1-4.

The antenna patterns shown in the following plots, designated as Figure 2-4, Figure 2-5 and Figure 2-6, refer to three separate axis of measurement that correspond to the orientation of the module (drawn in the center of each plot).

The horizontal and vertical data, blue and red respectively, in each plot correspond to the orientation (polarization) of the measurement antenna rotated 360 degrees around the module.

The horizontal measurement was done with the receive antenna parallel with the module PCB. The vertical measurement was done perpendicular to the module PCB.

These patterns allow the designer to understand the performance of the module with respect to the position of the receive/transmit antenna at the other end of the link. Figure 2-4, Figure 2-5 and Figure 2-6 show the simulated radiation patterns expected from the PCB antenna.
FIGURE 2-4: AZIMUTH RADIATION PATTERN, 2.44GHZ

Horizontal

Vertical

0° 90° 180° 270°

0 dB -5 dB -10 dB -15 dB -20 dB

Horizontal

Vertical
FIGURE 2-5: RADIATION PATTERN ON SIDE WITH PCB ANTENNA, 2.44GHZ
FIGURE 2-6: RADIATION PATTERN ALONG PIN EDGE, 2.44GHZ
2.8 External Antenna

The MRF24WB0MB has been regulatory certified for use with a number of antennas. The modular certifications hold only if the following antennas, or antennas that are materially and functionally equivalent, are used. All antennas connect to the module through an ultra miniature coaxial (U.FL or IPEX) connector.

A list of antennas for use with the module is provided in Table 2-2.

TABLE 2-2: LIST OF CERTIFIED EXTERNAL ANTENNAS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
<th>Gain (dBi)</th>
<th>VSWR Max.</th>
<th>Connector</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA-02-P05</td>
<td>PCB</td>
<td>2</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-L6H1-70-35</td>
<td>Dipole</td>
<td>2</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-D3</td>
<td>Dipole</td>
<td>1.5</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-L2H1</td>
<td>Dipole</td>
<td>2</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-3-C5H1</td>
<td>Dipole</td>
<td>3</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-5-C7H1</td>
<td>Dipole</td>
<td>5</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-5-F7H1</td>
<td>Dipole</td>
<td>5</td>
<td>2.0</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>WF2400-15001A</td>
<td>Dipole</td>
<td>5</td>
<td>2.0</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>WF2400-15001AR</td>
<td>Dipole</td>
<td>5</td>
<td>2.0</td>
<td>RF-IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>WF2400-10001I</td>
<td>Dipole</td>
<td>2</td>
<td>2.0</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>WF2400-10001R</td>
<td>Dipole</td>
<td>2</td>
<td>2.0</td>
<td>RF-IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X00I</td>
<td>Omni</td>
<td>9</td>
<td>2.0</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X00IR</td>
<td>Omni</td>
<td>9</td>
<td>2.0</td>
<td>RF-IPEX</td>
<td>Saytec</td>
</tr>
</tbody>
</table>
3.0 REGULATORY APPROVAL

The MRF24WB0MA/MRF24WB0MB module has received regulatory approvals for modular devices in the United States, Canada and European countries. Modular approval allows the end user to place the MRF24WB0MA/MRF24WB0MB module inside a finished product and not require regulatory testing for an intentional radiator (RF transmitter), provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user’s authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance. The integrator may still be responsible for testing the end product for any additional compliance requirements that become necessary with this module installed (for example, digital device emission, PC peripheral requirements, etc.) in the specific country that the end device will be marketed.

Refer to the specific country radio regulations for details on regulatory compliance.

3.1 United States

The MRF24WB0MA/MRF24WB0MB has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C “Intentional Radiators” 15.247 and modular approval in accordance with FCC Public Notice DA 00-1407 Released: June 26, 2000, Part 15 Unlicensed Modular Transmitter Approval. The MRF24WB0MA/MRF24WB0MB module can be integrated into a finished product without obtaining subsequent and separate FCC approvals for intentional radiation.

The MRF24WB0MA/MRF24WB0MB module has been labeled with its own FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. The following examples present terminology that could be used:

Contains Transmitter Module FCC ID:
W7OZG2100-ZG2101

or

Contains FCC ID: W7OZG2100-ZG2101

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

A user’s manual for the product should include the following statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
3.1.1 RF EXPOSURE

All transmitters regulated by FCC must comply with RF exposure requirements. OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, provides assistance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to Radio Frequency (RF) fields adopted by the Federal Communications Commission (FCC). The bulletin offers guidelines and suggestions for evaluating compliance.

If appropriate, compliance with exposure guidelines for mobile and unlicensed devices can be accomplished by the use of warning labels and by providing users with information concerning minimum separation distances from transmitting structures and proper installation of antennas.

The following statement must be included as a CAUTION statement in manuals and OEM products to alert users of FCC RF exposure compliance:

To satisfy FCC RF Exposure requirements for mobile and base station transmission devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended.

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

If the MRF24WB0MA/MRF24WB0MB module is used in a portable application (i.e., the antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with FCC rules 2.1091.

3.1.2 HELPFUL WEB SITES

3.2 Canada

The MRF24WB0MA/MRF24WB0MB module has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) “RSS-210” and “RSS-Gen”.

From “Section 7.1.1, RSS-Gen”, Issue 2, June 2007, Modular Transmitter Approval:

“Host devices which contain separately certified modules do not need to be recertified, provided that they meet the following conditions:

a) The host device, as a stand-alone unit without any separately certified modules, complies with all applicable Radio Standards Specifications.

b) The host device and all the separately certified modules it contains jointly meet the RF exposure compliance requirements of “RSS-102”, if applicable.

c) The host device complies with the certification labeling requirements of each of the modules it contains.”

The following example demonstrates labeling compliance.

NOTE: Compliance of a module in its final configuration is the responsibility of the applicant. A host device will not be considered certified if the instructions regarding antenna configuration provided in the original description, of one or more separately certified modules it contains, were not followed.

From “Section 5.2, RSS-Gen”, Issue 2, June 2007, Equipment Labels:

“All Category I radio equipment intended for use in Canada shall permanently display on each transmitter, receiver or inseparable combination thereof, the applicant’s name (i.e., manufacturer’s name, trade name or brand name), model number and certification number. This information shall be affixed in such a manner as to not be removable except by destruction or defacement. The size of the lettering shall be legible without the aid of magnification, but is not required to be larger than 8-point font size. If the device is too small to meet this condition, the information can be included in the user manual upon agreement with Industry Canada.”

The label is shown in the following example:

Contains IC: 8248A-G21ZEROG
From “Section 7.1.6, RSS-Gen”, Issue 2, June 2007, Digital Circuits:

“If the device contains digital circuitry that is not directly associated with the radio transmitter, the device shall also have to comply with ICES-003, Class A or B as appropriate, except for ICES-003 labeling requirements. The test data obtained (for the ICES-003 tests) shall be kept by the manufacturer or importer whose name appears on the equipment label, and made available to Industry Canada on request, for as long as the model is being marketed in Canada.”

3.2.1 HELPFUL WEB SITES:
Industry Canada: http://www.ic.gc.ca/

3.3 Europe
The MRF24WB0MA/MRF24WB0MB module has been certified for use in European countries. The following testing has been completed:
Test standard ETSI EN 300 328 V1.7.1 (2006-10):
• Maximum Transmit Power
• Maximum EIRP Spectral Density
• Frequency Range
• Radiated Emissions

Test standards ETSI EN 301 489-1:2008 and ETSI EN 301 489-17:2008:
• Radiated Emissions
• Electro-Static Discharge
• Radiated RF Susceptibility

The modules are fully compliant with
• Radiated Emissions EN 55022
• Electrostatic Discharge EN 61000-4-2
• Radiated Immunity EN 61000-4-3
• EN 60950-1
• CE-Mark
• RoHS

ETSI does not provide a modular approval similar to the USA (FCC) and Canada (IC). However, the testing completed above can be used as part of the customer’s application for certification. The test report data can be included in their test plan and can significantly lower the customer’s certification burden.

A helpful document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation “70-03 E”, downloadable from the European Radio Communications Office (ERO): http://www.ero.dk/

The end user is responsible for ensuring compliance with harmonized frequencies and labeling requirements for each country in which the end device is marketed and sold.

3.3.1 HELPFUL WEB SITES:
European Conference of Postal and Telecommunications Administrations (CEPT): http://www.cept.org/
European Telecommunications Standards Institute (ETSI): http://www.etsi.org/
European Radio Communications Office (ERO): http://www.ero.dk/

3.4
Should other regulatory jurisdiction certification be required by the customer, or the customer need to recertify the module for other reasons, a certification utility is available. The utility runs on a Window’s PC and utilizes a USB to SPI converter to interface to the MRF24WB0M module. In order to use the utility, the MRF24WB0M module must be out of reset and not accessed by the system host. That is, the SPI signals to the MRF24WB0M must be tri-state, with Reset and Hibernate deasserted. The following signals will need to be brought from the MRF24WB0M for connection to the PC (through the USB adapter):
• SDO
• SDI
• CS
• SCK
• INT
• GND

For further regulatory Certification Utility and documentation, contact your local Microchip salesperson.
3.5 Wi-Fi® Alliance

Wi-Fi Alliance Certification focuses on interoperability testing of devices based on 802.11 standards. Historically, when the certification process and programs were developed by Wi-Fi Alliance members, the vast majority of the 802.11 clients were PC-centric, and certification testing adequately addressed those types of devices. In subsequent years, the number of Wi-Fi devices that are not PC-centric has grown significantly.

These non-standard devices, as a class of products, have been dubbed Application Specific Devices (ASDs) by the Wi-Fi Alliance. ASDs are 802.11 devices, for example clients or access points (APs), which cannot be tested under a standard Alliance test plan because they do not comply with the standard test configuration and/or because they are designed to perform a specific application. Examples include, but are not limited to: bar code scanners, pagers, recording devices, monitoring equipment, and cable modems.

The APs or clients that are used to validate ASD compliance (from the standard test bed) will meet all of the requirements specified in the applicable System Interoperability Test Plans (referred to as the "standard test plan"), unless specifically exempted. The MRF24WB0MA and MRF24WB0MB modules are in the ASD category.

The modules are certified under Wi-Fi 802.11 with WPA2, WPA, and WEP System Interoperability ASD Model Test Plan with Test Engine For IEEE 802.11a, b, and g Devices (Version 1.0).

Per the Wi-Fi Alliance approved ASD test plan, the definition of the Microchip MRF24WB0MA and MRF24WB0MB modular solutions is expressed in the following statements:

"Member Wireless solution is a single-chip 802.11b module including MAC, baseband, RF and power amplifier personal STA. It utilizes a simple to use API for embedded markets, and an OS is not a requirement for operation. It supports 1 and 2 Mbps (TX and RX). It also supports WEP, WPA Personal, and WPA2 Personal security. Ciphers supported are AES and TKIP. The Member Wireless solution interfaces with the HOST through SPI Bus. Some applications for the Member Wireless solution are as following:

- Sensors/Controls such as Industrial & Factory sensors, HVAC, & Lighting
- Consumer Electronic such as remote controls, toys, and internet radio

This certification ensures that the MRF24WB0MA and MRF24WB0MB modules have passed rigorous testing for interoperability across existing consumer and business Wi-Fi equipments, and their certifications are completed (WFA ID: WFA7150). The certification effort undertaken will save customers time and money. For modular policy, refer to WFA Module Policy (Version 2.2; MARCH 2006)."
4.0 ELECTRICAL CHARACTERISTICS

TABLE 4-1: DIGITAL ELECTRICAL CHARACTERISTICS (NOMINAL CONDITIONS: 25°C, Vdd = 3.3V)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL (Input low voltage)</td>
<td>-0.3</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>VIH (Input high voltage)</td>
<td>2</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>VOL (Output low voltage)</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>VOH (Output high voltage)</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>IOL (Output low level current at VOL Max)</td>
<td>—</td>
<td>8.5</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>IOH (Output high level current at VOH Min)</td>
<td>—</td>
<td>15.4</td>
<td>—</td>
<td>mA</td>
</tr>
</tbody>
</table>

TABLE 4-2: ABSOLUTE MAXIMUM RATINGS(1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-40C</td>
<td>+125C</td>
<td>—</td>
</tr>
<tr>
<td>VDD</td>
<td>0V</td>
<td>4.2V for 0.5mSec</td>
<td>VDD above this level and duration will disable Radio</td>
</tr>
<tr>
<td>VIN on SDI, CS, SCK</td>
<td>-0.3V</td>
<td>5.5V</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Listed Absolute Maximum Ratings are not meant for functional operation. Operation at these levels is not guaranteed, and may reduce the operating life of the component.

TABLE 4-3: RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature(2)</td>
<td>-20</td>
<td>—</td>
<td>+85</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>VDD – for FCC and IC</td>
<td>2.70</td>
<td>3.3</td>
<td>3.63(1)</td>
<td>Volts</td>
</tr>
</tbody>
</table>

Note 1: While 3.63V is the maximum operating voltage, the module will detect an overvoltage condition at 4.2V and disable the RF Transmit function after 0.5 ms. This is an RF certification requirement pertaining to disabling transmission in unforeseen overvoltage conditions.

2: Ambient temperature for industrial part number is minimum -40C to maximum +85C. Contact Microchip Sales for industrial temperature parts.
Note 1: Sleep current is current consumed during periods of “standby” between DTIM beacons. The module will
wake up 2 mS before a DTIM and turn on its receiver, and possibly its transmitter (if data is available for it).

2: IDD core is current consumed by the part not including the I/O consumption of the SPI port.

3: Current Consumption values represent Typical Peak currents, and the measured current conditions were
done with 85% duty cycle modulated signal. Wi-Fi applications typically operate at less than 85% TX duty
cycle. TX current is dependent on such criteria as transmit power setting, and transmit data rate and band-
width being used. RX current is affected by connection distance.

TABLE 4-4: CURRENT CONSUMPTION(3) (NOMINAL CONDITIONS: 25C, VDD = 3.3V)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD, Hibernate = 3.3V</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>IDD, Sleep (software enabled)</td>
<td>—</td>
<td>250(1)</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>IDD, Standby (transitional state)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>IDD core(2), RX on, Receive @-83dBm with 2Mbps modulated signal at antenna port</td>
<td>—</td>
<td>85</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>IDD core, TX on, +0 dBm</td>
<td>—</td>
<td>115</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>IDD core, TX on, +10 dBm</td>
<td>—</td>
<td>154</td>
<td>—</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: Nominal conditions: 25C, VDD = 3.3V, Flo = 2437 MHz, measurements at antenna port.

TABLE 4-5: RECEIVER AC CHARACTERISTICS(1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flo</td>
<td>2412</td>
<td>—</td>
<td>2484</td>
<td>MHz</td>
</tr>
<tr>
<td>RX Min Input Level Sensitivity, 1Mbps, 8% PER</td>
<td>—</td>
<td>-91</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Min Input Level Sensitivity, 2Mbps, 8% PER</td>
<td>—</td>
<td>-88</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Max Input Level (Power), 1Mbps, 8% PER</td>
<td>—</td>
<td>-4</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Max Input Level (Power), 2Mbps, 8% PER</td>
<td>—</td>
<td>-4</td>
<td>—</td>
<td>dBm</td>
</tr>
</tbody>
</table>

Note 1: Nominal conditions: 25C, VDD = 3.3V, Flo = 2437 MHz, measurements at antenna port.

TABLE 4-6: TRANSMITTER AC CHARACTERISTICS(1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flo</td>
<td>2412</td>
<td>—</td>
<td>2484</td>
<td>MHz</td>
</tr>
<tr>
<td>Average Pout (transmit spectrum mask compliant)</td>
<td>—</td>
<td>+10</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Average Pout gain step resolution from +5 to +10dBm</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Average Pout gain step resolution from -5 to +5dBm</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Average Pout settled variation</td>
<td>-0.5</td>
<td>—</td>
<td>0.5</td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: Nominal conditions: 25C, VDD = 3.3V, Flo = 2437 MHz, 2 Mbps. modulated signal measured at antenna port.
FIGURE 4-1: SPI INPUT TIMING

CS must be toggled for each SPI block transfer.

FIGURE 4-2: SPI OUTPUT TIMING

TABLE 4-7: SPI INTERFACE AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsck</td>
<td>SCK Period</td>
<td>40</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>TcSD</td>
<td>CS High time</td>
<td>50</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>Tcss</td>
<td>CS Setup time</td>
<td>50</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>TcSH</td>
<td>CS Hold time</td>
<td>50</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>TsU</td>
<td>SDI Setup time</td>
<td>10</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>Thd</td>
<td>SDI Hold time</td>
<td>10</td>
<td>—</td>
<td>nS</td>
</tr>
<tr>
<td>TV</td>
<td>SDO Valid time</td>
<td>—</td>
<td>15</td>
<td>nS</td>
</tr>
</tbody>
</table>
APPENDIX A: REVISION HISTORY

Revision A (April 2010)
This is the initial release of the document.

Revision B (June 2011)
This revision includes the following updates:
• Updated Section 1.1, Operational: Changed temperature range to -20°C to +85°C
• Updated Table 1-1: Added type and pin description to pin 23.
• Updated Table 4-3
• Replaced Figure 2-2
• Updated Section 2.0, Circuit Description
• Added Section 3.4,
• Updated the temperature on the order code in Section 4.1, Product Identification System
• Minor changes to the text and formatting were incorporated throughout the document.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: Technical Publications Manager
RE: Reader Response

From: Name __________________________
Company ____________________________
Address ______________________________
City / State / ZIP / Country ______________
Telephone: (______) _______ - _________ FAX: (____) _______ - _________

Application (optional):

Would you like a reply? Y ___ N ___

Device: MRF24WB0MA/MRF24WB0MB Literature Number: DS39957C

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
PRODUCT IDENTIFICATION SYSTEM

To order parts, including industrial, or obtain information, for e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>M</th>
<th>X</th>
<th>T</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Module Type</td>
<td>Tape and Reel</td>
<td>Temperature Range</td>
<td></td>
</tr>
</tbody>
</table>

Device: MRF24WB0MA/MRF24WB0MB; VDD range 2.7V to 3.6V

Temperature Range:
- -20°C to +85°C (Extended commercial)
- -40°C to +85°C (Industrial Temp)

Examples:

a) MRF24WB0MA/RM = Extended commercial temp. tray
b) MRF24WB0MB/RM = Extended commercial temp. tray
Worldwide Sales and Service

AMERICAS

<table>
<thead>
<tr>
<th>Office</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>2355 West Chandler Blvd., Chandler, AZ 85224-6199</td>
</tr>
<tr>
<td>Technical Support</td>
<td>http://www.microchip.com/sUPPORT</td>
</tr>
<tr>
<td>Web Address</td>
<td>www.microchip.com</td>
</tr>
</tbody>
</table>

Atlanta	Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455
Boston	Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088
Chicago	Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075
Cleveland	Independence, OH Tel: 216-447-0464 Fax: 216-447-0643
Dallas	Addison, TX Tel: 972-818-7423 Fax: 972-818-2924
Detroit	Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260
Indianapolis	Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453
Los Angeles	Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608
Santa Clara	Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445
Toronto	Mississauga, Ontario, Canada Tel: 905-673-0999 Fax: 905-673-6509

ASIA/PACIFIC

<table>
<thead>
<tr>
<th>Office</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Pacific Office</td>
<td>Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431</td>
</tr>
<tr>
<td>Australia - Sydney</td>
<td>Tel: 61-2-9888-6733 Fax: 61-2-9888-6755</td>
</tr>
<tr>
<td>China - Beijing</td>
<td>Tel: 86-10-8569-7000 Fax: 86-10-8528-2104</td>
</tr>
<tr>
<td>China - Chengdu</td>
<td>Tel: 86-28-8665-5511 Fax: 86-28-8665-7889</td>
</tr>
<tr>
<td>China - Chongqing</td>
<td>Tel: 86-23-9890-9588 Fax: 86-23-9890-9500</td>
</tr>
<tr>
<td>China - Hangzhou</td>
<td>Tel: 86-571-2819-3180 Fax: 86-571-2819-3189</td>
</tr>
<tr>
<td>China - Hong Kong SAR</td>
<td>Tel: 852-2401-1200 Fax: 852-2401-3431</td>
</tr>
<tr>
<td>China - Nanjing</td>
<td>Tel: 86-25-8473-2460 Fax: 86-25-8473-2470</td>
</tr>
<tr>
<td>China - Qingdao</td>
<td>Tel: 86-532-8502-7355 Fax: 86-532-8502-7205</td>
</tr>
<tr>
<td>China - Shanghai</td>
<td>Tel: 86-21-5407-5533 Fax: 86-21-5407-5066</td>
</tr>
<tr>
<td>China - Shenyang</td>
<td>Tel: 86-24-2334-2829 Fax: 86-24-2334-2393</td>
</tr>
<tr>
<td>China - Shenzhen</td>
<td>Tel: 86-755-8203-2660 Fax: 86-755-8203-1760</td>
</tr>
<tr>
<td>China - Wuhan</td>
<td>Tel: 86-27-5980-5300 Fax: 86-27-5980-5118</td>
</tr>
<tr>
<td>China - Xian</td>
<td>Tel: 86-29-8833-7252 Fax: 86-29-8833-7256</td>
</tr>
<tr>
<td>China - Xiamen</td>
<td>Tel: 86-592-2388138 Fax: 86-592-2388130</td>
</tr>
<tr>
<td>China - Zhuhai</td>
<td>Tel: 86-756-3210040 Fax: 86-756-3210049</td>
</tr>
</tbody>
</table>

ASIA/PACIFIC

<table>
<thead>
<tr>
<th>Office</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>India - Bangalore</td>
<td>Tel: 91-80-3090-4444 Fax: 91-80-3090-4123</td>
</tr>
<tr>
<td>India - New Delhi</td>
<td>Tel: 91-11-4160-8631 Fax: 91-11-4160-8632</td>
</tr>
<tr>
<td>India - Pune</td>
<td>Tel: 91-20-2566-1512 Fax: 91-20-2566-1513</td>
</tr>
<tr>
<td>Japan - Yokohama</td>
<td>Tel: 81-45-471-6166 Fax: 81-45-471-6122</td>
</tr>
<tr>
<td>Korea - Daegu</td>
<td>Tel: 82-53-744-4301 Fax: 82-53-744-4302</td>
</tr>
<tr>
<td>Korea - Seoul</td>
<td>Tel: 82-2-654-7200 Fax: 82-2-558-5932 or 82-2-558-5934</td>
</tr>
<tr>
<td>Malaysia - Kuala Lumpur</td>
<td>Tel: 60-3-6201-9857 Fax: 60-3-6201-9859</td>
</tr>
<tr>
<td>Malaysia - Penang</td>
<td>Tel: 60-4-227-8870 Fax: 60-4-227-4068</td>
</tr>
<tr>
<td>Philippines - Manila</td>
<td>Tel: 63-2-634-9065 Fax: 63-2-634-9069</td>
</tr>
<tr>
<td>Singapore</td>
<td>Tel: 65-6334-8870 Fax: 65-6334-8850</td>
</tr>
<tr>
<td>Taiwan - Hsin Chu</td>
<td>Tel: 886-3-6578-300 Fax: 886-3-6578-370</td>
</tr>
<tr>
<td>Taiwan - Kaohsiung</td>
<td>Tel: 886-7-213-7830 Fax: 886-7-330-9305</td>
</tr>
<tr>
<td>Taiwan - Taipei</td>
<td>Tel: 886-2-2500-6610 Fax: 886-2-2508-0102</td>
</tr>
<tr>
<td>Thailand - Bangkok</td>
<td>Tel: 66-2-694-1351 Fax: 66-2-694-1350</td>
</tr>
</tbody>
</table>

EUROPE

<table>
<thead>
<tr>
<th>Office</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria - Wels</td>
<td>Tel: 43-7242-2244-39 Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Denmark - Copenhagen</td>
<td>Tel: 45-4450-2828 Fax: 45-4485-2829</td>
</tr>
<tr>
<td>France - Paris</td>
<td>Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Germany - Munich</td>
<td>Tel: 49-89-627-144-0 Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Italy - Milan</td>
<td>Tel: 39-0331-742611 Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Netherlands - Drunen</td>
<td>Tel: 31-416-690399 Fax: 31-416-690340</td>
</tr>
<tr>
<td>Spain - Madrid</td>
<td>Tel: 34-91-708-08-90 Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>UK - Wokingham</td>
<td>Tel: 44-118-921-5869 Fax: 44-118-921-5820</td>
</tr>
</tbody>
</table>

© 2010–2011 Microchip Technology Inc.