Breakthrough technology for budget conscious customers

Overview of the Keysight InfiniiVision X-Series oscilloscopes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog channels</td>
<td>2 and 4</td>
<td>2 and 4</td>
</tr>
<tr>
<td>Bandwidth (upgradable)</td>
<td>70, 100, 200 MHz</td>
<td>100, 200, 350, 500 MHz, 1 GHz</td>
</tr>
<tr>
<td>Digital channels</td>
<td>8 (MSO models or upgrade)*</td>
<td>16 (MSO models or upgrade)</td>
</tr>
<tr>
<td>Maximum sample rate</td>
<td>2 GSa/s</td>
<td>5 GSa/s (1-GHz models)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 GSa/s (100-500 MHz models)</td>
</tr>
<tr>
<td>Maximum memory depth</td>
<td>100 kpts/channel (standard)</td>
<td>2 Mpts (standard), 4 Mpts (option)</td>
</tr>
<tr>
<td>Waveform update rate</td>
<td>> 50,000 waveforms per second</td>
<td>> 1,000,000 waveforms per second</td>
</tr>
<tr>
<td>Display</td>
<td>8.5-inch display</td>
<td>8.5-inch display</td>
</tr>
<tr>
<td>InfiniiScan Zone touch trigger</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>WaveGen 20-MHz function/</td>
<td>Single-channel function only (option)</td>
<td>Single-channel AWG (option)</td>
</tr>
<tr>
<td>arbitrary waveform generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated digital voltmeter</td>
<td>Yes (option)</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>Search and navigate</td>
<td>Yes (serial)</td>
<td>Yes</td>
</tr>
<tr>
<td>Segmented memory</td>
<td>Yes (option)</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>Mask/limit testing</td>
<td>Yes (option)</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>Power analysis</td>
<td>No</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>USB 2.0 signal quality test</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HDTV analysis</td>
<td>No</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>Advanced waveform math</td>
<td>No</td>
<td>Yes (option)</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Standard USB 2.0 (LAN/Video option) (GPIB option)</td>
<td>Standard USB2.0 (LAN/Video option) (GPIB option)</td>
</tr>
</tbody>
</table>

* The digital channels and serial protocol analysis cannot be used simultaneously on 2000 X-Series.

Need bigger display and state-of-the-art usability?

See the InfiniiVision 4000 X-Series, which redefines the oscilloscope experience.

- Industry’s first 12.1-inch capacitive touch display
- InfiniiScan Zone touch trigger capability
- 200 MHz - 1.5 GHz DSO and MSO models
- 1,000,000 waveforms/sec
- Standard segmented memory
- Fully upgradable 5 instrument in 1
 - Digital channels (MSO)
 - Protocol analysis including USB 2.0
 - 20 MHz Dual-channel WaveGen with arbitrary waveform and modulation support
 - Digital voltmeter (DVM)
- Application analysis including power analysis, Xilinx FPGA, and USB 2.0 signal quality
- N8900A Infiniium Offline software support
- Standard LAN, USB, and video out connectivity

See www.keysight.com/find/4000X-Series for more details.
More scope

The InfiniiVision 2000 X-Series offers entry-level price points to fit your budget with superior performance and optional capabilities that are not available in any other oscilloscope in its class. This Keysight Technologies, Inc. breakthrough technology delivers more scope for the same budget.

With more scope, you can:
- See more of your signal more of the time with the largest screen in its class, the deepest memory and the fastest waveform update rates
- Do more with the power of 5 instruments in 1: oscilloscope, logic timing analyzer, WaveGen built-in 20 MHz function generator (optional), serial protocol triggering and decode (optional), and digital voltmeter (optional)
- Get more investment protection with the classes only fully upgradable scope, including memory and bandwidth, and a standard 5 year warranty.*

*5-year warranty applies to all orders on or after 1/1/2013.
See more of your signal, more of the time

Largest display

Engineering for the best signal visibility starts with the largest display. Our 8.5-inch WVGA display offers 50% more viewing area with 3.5 times the resolution (WVGA 800 x 480 versus 7-inch WQVGA 480 x 234).

Notice that the Keysight 2000 X-Series allows you to see more of your signals, and captures the infrequent glitch that you are unable to see on other oscilloscopes in this class.

Fastest update rate

With Keysight-designed MegaZoom IV custom ASIC technology, the InfiniiVision 2000 X-Series family delivers up to 50,000 waveforms per second. With this speed you can see signal detail and infrequent anomalies more of the time.

How does Keysight do that?

Keysight-designed MegaZoom IV custom ASIC technology combines the capabilities of an oscilloscope, logic analyzer, and WaveGen built-in function generator in a compact form factor at an affordable price. 4th generation MegaZoom technology enables the industry’s fastest waveform update rate with responsive deep memory acquisitions.
Do more with the power of 5 instruments in 1

Best-in-class oscilloscope

The InfiniiVision 2000 X-Series features Keysight’s patented MegaZoom IV smart memory technology that is always enabled and always responsive providing the industry’s fastest update rate at up to 50,000 waveforms per second, with no compromise if you turn on measurements or add digital channels. In addition, the 2000 X-Series offers 23 automated measurements such as voltage, time, and frequency as well as five waveform math functions including add, subtract, multiply, divide, and FFT.

Industry’s first economy-class mixed signal oscilloscope (MSO)

The 2000 X-Series is the first instrument in its class to offer an integrated logic timing analyzer. Digital content is everywhere in today’s designs and with an additional 8 integrated digital timing channels, you now have up to 12 channels of time-correlated triggering, acquisition and viewing on the same instrument. Buy a 2 or 4 channel DSO and at any time, upgrade it yourself to a MSO with a license to turn on those integrated 8 digital timing channels.

Industry’s first WaveGen built-in 20 MHz function generator with a modulation capability

An industry first, the 2000 X-Series offers an integrated 20 MHz function generator, now available with the signal modulation capability. Ideal for educational or design labs where bench space and budget are at a premium, the integrated function generator provides stimulus output of sine, square, ramp, pulse, DC and noise waveforms to your device under test. No need to buy a separate function generator when you can get one integrated in your new oscilloscope. Turn on WaveGen at any time by ordering the DSOX2WAVEGEN option and install the license yourself.

Hardware-based serial protocol decode and triggering

- Embedded serial triggering and analysis (I²C, SPI)
- Computer serial triggering and analysis (RS232/422/485/UART)
- Automotive and industrial serial triggering and analysis (CAN,LIN)

Keysight’s InfiniiVision Series oscilloscopes are the industry’s first scopes to use hardware-based serial protocol decoding. Other vendors’ oscilloscopes use software post-processing techniques that slow down both waveform and decode update rate. That’s especially true when using deep memory, which is often required to capture multiple packetized serial bus signals. Faster decoding with hardware-based technology enhances scope usability and, more importantly, the probability of capturing infrequent serial communication errors. After capturing a serial bus communication, you can easily perform a search-and-navigation operation based on specific criteria of your interest. Sometimes it may be necessary to correlate data from one serial bus to another. You can turn on the serial trigger and decode or digital channels simultaneously on the 2000 X-Series.

Integrated digital voltmeter

An industry first, the 2000 X-Series offers an integrated 3-digit voltmeter (DVM) and 5-digit frequency counter inside the oscilloscopes. The voltmeter operates through the same probes as the oscilloscope channels, however, the measurements are de-coupled from the oscilloscope triggering system so that both the DVM and triggered oscilloscope measurements can be made with the same connection. The voltmeter results are always displayed, keeping these quick characterization measurements at your fingertips. Turn on DVM at any time by ordering the DSOXDVM option.
Get more investment protection with the industry’s only fully upgradable oscilloscope

Upgradability:
Project needs change, but traditional oscilloscopes are fixed – you get what you pay for at the time of purchase. With the 2000 X-Series, your investment is protected. If you need more bandwidth (up to 200 MHz), digital channels, memory, WaveGen, integrated digital voltmeter, or measurement applications in the future, you can easily add them all after the fact.

Add at the time of your purchase or upgrade later:
- Bandwidth
- Digital channels (MSO)
- Memory
- WaveGen built-in 20 MHz function generator
- Integrated digital voltmeter (DVM)
- Serial protocol analysis
- Measurement applications
 - Mask testing
 - Segmented memory
 - Educators’ lab kit

See page 21 for more information on upgradable products.

Mask testing
Whether performing pass/fail tests to specified standards in manufacturing or testing for infrequent signal anomalies in R&D debug, the mask test option can be a valuable productivity tool. The 2000 X-Series features hardware-based mask testing and can perform up to 50,000 tests per second.

Segmented memory
When capturing low-duty cycle pulses or data bursts, you can use segmented memory acquisition to optimize acquisition memory. Segmented memory acquisition lets you selectively capture and store important segments of signals without capturing unimportant signal idle/dead-time. Segmented memory acquisition is ideal for applications including packetized serial pulses, pulsed laser, radar bursts and high-energy physics experiments. Up to 250 segments can be captured on the 2000 X-Series models with a minimum re-arm time under 19 µs.

30-day trial license
The 2000 X-Series comes with a one-time 30-day alloptional-features trial license. You can choose to start the 30-day trial at any time. In addition you can redeem individual optional feature 30-day trial licenses at any time by visiting www.keysight.com/find/30daytrial. This enables you to receive in effect 60 days of trial license of each optional feature.
Other productivity tools

Reference waveforms

Store up to two waveforms in the scope’s non-volatile reference waveform memory locations. Compare these reference waveforms with live waveforms, and perform post analysis and measurements of stored data. You can also store waveform data on a removable USB memory device that can be recalled back into one of the available two reference memories of the scope for full waveform measurement and analysis. Save and/or transfer waveforms as XY data pairs in a comma-separated values format (*.csv) for PC analysis. Save screen images to a PC for documentation purposes in a variety of formats including: 8-bit bitmaps (*.bmp), 24-bit bitmaps (*.bmp), and PNG 24-bit images (*.png).

Localized GUI and help

Operate the scope in the language most familiar to you. The graphical user interface, built-in help system, front panel overlays, and user’s manual are available in 13 languages. Choose from: English, Japanese, simplified Chinese, traditional Chinese, Korean, German, French, Spanish, Russian, Portuguese, Thai, Polish and Italian. During operation, access the built-in help system just by pressing and holding any button.

Probe solutions

Get the most out of your 2000 X-Series scope, by using the right probes and accessories for your application. Keysight offers a complete family of innovative probes and accessories for the InfiniiVision 2000 X-Series scopes. For the most up-to-date and complete information about Keysight’s probes and accessories, please visit our Web site at www.keysight.com/find/scope_probes.

Autoscale

Quickly display any active signals and automatically set the vertical, horizontal and trigger controls for optimal viewing with the press of the autoscale button. (This feature can be disabled or enabled for the education environment via a USB thumb drive file with a SCPI remote command).
Other productivity tools (continued)

Connectivity and LXI compatibility
Built-in USB host (one front, one back) and USB device ports make PC connectivity easy. Operate the scope from your PC and save and recall stored waveforms as well as set-up files via LAN. An optional LAN/VGA module gives you network connectivity and complete LXI class C support as well as the ability to connect to an external monitor. An optional GPIB module is also available. Only one module may be used at a time.

34840B BenchVue lets you visualize the 2000 X-Series and multiple measurements simultaneously. Save time with the ability to export measurement data to Excel, Word and MATLAB in three clicks. Monitor and control your 3000 XSeries with a mobile device from anywhere. Learn more at www.keysight.com/find/BenchVue.

View Scope enables simple and free time–correlated measurements between a 2000 X-Series oscilloscope and a Keysight 16900, 16800, 1690 or 1680 Series logic analyzer.

Virtual front panel
In addition to the traditional VNC virtual front panel remote operation through your favorite PC Web browser, the InfiniiVision X-Series supports remote oscilloscope control from your tablet devices. The tablet virtual front panel looks and acts as the real front panel on the oscilloscope. Control the setting, save/recall data, get image, and more.

Secure erase
The secure erase feature comes standard with all InfiniiVision X-Series models. At the press of a button, internal nonvolatile memory is clear of all setup, reference waveforms, and user preferences, ensuring the highest level of security in compliance with National Industrial Security Program Operation Manual (NISPOM) Chapter 8 requirements.
Other productivity tools (continued)

Infiniium Offline oscilloscope analysis software (N8900A)

Keysight’s Infiniium Offline PC-based analysis oscilloscope software allows you to do additional signal viewing, analysis and documentation tasks away from your scope. Capture waveforms on your scope, save to a file, and recall the waveforms into Infiniium Offline. The application supports a variety of popular waveform formats from multiple oscilloscope vendors and includes the following features:

Navigate
- Pan and zoom to anywhere in the data record. Navigate in time, or between bookmarks.

View
- Up to 8 waveforms simultaneously, 1, 2, or 4 grids (stacked, side by side, custom layout, zoom)

Measurements
- Over 50 automated measurements
- View up to 20 simultaneously
- User-customizable result window (size, position, information)
- X & Y markers with dynamic delta values

Analyze
- 20 math operators including FFT and filters
- Up to four independent/cascaded math functions
- Measurement histogram

View windows
- Analog, math, spectral, measurement results (simultaneous, tabbed, or undocked)

Documentation
- Right-click to copy
- Up to 100 bookmarks
- Annotated axis values
- Markers with dynamic delta value updates when moved
- One step save/load setup and all waveforms

Analysis upgrades (optional)
- Protocol decode for I2C/SPI, RS232/UART, CAN/ LIN/FlexRay, SATA, 8B/10B, digRF v4, JTAG , MIPI D-Phy, SVID, Ethernet 10G KR, PCIe 1, 2, 3, USB 2, 3, HSIC
- Jitter analysis
- Serial data analysis
Other productivity tools (continued)

Keysight Spectrum Visualizer (ASV) software

This PC-based software package connects to the scope via USB or ethernet connection and uses the Keysight I/O libraries to communicate. It provides advanced FFT frequency domain analysis at a cost-effective price as well as spectrum and spectrogram analysis with an intuitive user interface that RF engineers are familiar with.

Tools include:

Spectrum measurements
- Power (dBm) vs. frequency
- Horizontal (x-axis): Specify center frequency and frequency span, or start and stop frequencies
- Vertical (y-axis): Specify reference level (dBm) and scale (dB/div)
- Settable resolution bandwidth
- Flat top, Gaussian, or Hanning windows applied to the time domain data for the FFT analysis
- Marker to peak amplitude, and marker to center frequency.
- Marker peak search can be enabled for time-varying signals
- Multiple marker, with delta X and delta Y readouts

Acquisition and display modes
- Free Run (continuous), Triggered, Stop, Single, Preset
- Triggered mode: specify trigger power level (dBm), single or continuous sweep
- Enable/disable y-axis label
- Enable/disable main trace display
- Max hold display mode
- Gated Measurements
- Multiple viewing options
 - Spectrogram
 - waterfall
 - 3D
- Changeable scaling settings on main window
- Local language support
- Multiple oscilloscopes can be configured to allow user to rapidly switch between multiple instruments

Arbitrary waveform generator source control
- 20 MHz sine wave
- 10 MHz square wave
- Pulsed waveform
- WaveGen source settings can be altered while ASV is running for interactive signal source and analysis capability
Quickly and easily set up or upgrade a teaching lab

Teach your students what an oscilloscope is and how to perform basic measurements with the Educator’s Oscilloscope Training Kit (DSOXEDK). It includes training tools created specifically for electrical engineering and physics undergraduate students and professors. It contains an array of built-in training signals, a comprehensive oscilloscope lab guide and tutorial written specifically for the undergraduate student, and an oscilloscope fundamentals PowerPoint slide set for professors and lab assistants. For more information, refer to www.keysight.com/find/EDK. Also available are DreamCatcher’s full semester application-specific courseware written around Keysight test and measurement equipment: www.dreamcatcher.asia/cw. With features such as the ability to disable autoscale and the 50- Ohm input data path, the InfiniiVision X-Series is a perfect choice for education.

Get your students to quickly put the scope to work

Intuitive localized front panel design with pushable knobs for quick access to commonly used oscilloscope functions helps students spend more time learning the concepts and less time learning how to use the oscilloscope. Enable your students to answer their own questions with the localized built-in help system that provides quick access by simply pressing and holding any button.

Stretch your budget over the long term

Save money with an industry-exclusive built-in 20 MHz WaveGen, instead of a separate function generator. Buy what you need today and protect your investment in the future with the only oscilloscopes in this class with upgradable bandwidth, 8 digital channels (MSO), WaveGen, integrated digital voltmeter and measurement applications. Get long scope life and keep repair costs to a minimum with a standard 5-year warranty*, and an instrument reliability you’ve come to expect from the leader in test and measurement equipment.

*Applies to all orders on or after 1/1/2013.

Optimize lab bench space

With 5 instruments in 1, you will save on precious lab bench space by getting an oscilloscope, logic timing analyzer, serial protocol analyzer, WaveGen function generator and integrated digital voltmeter all in one innovative instrument with a footprint that is only 5.57 inches deep. With the large 8.5-inch WVGA display, you can easily view all signals on one screen with enough viewing area for more than one student to view.
Oscilloscope shown actual size

- 8.5-inch high resolution wide screen display reveals subtle details that most scopes don't show you.
- Get up to eight integrated digital channels.
- Built-in USB port makes it easy to save your work and update your system software quickly.
- WaveGen – Industry first built-in function generator.

www.keysight.com/find/BenchVue
Quick summary display of sample rate, channel settings and measurements

Navigation front panel controls make it easy to play, stop, rewind and fast forward through waveforms

Quickly pan and zoom for analysis with MegaZoom IV's instant response and optimum resolution

Autoscale lets you quickly display any analog or digital active signals, automatically setting the vertical, horizontal and trigger controls for the best display, while optimizing memory

All front panel knobs are pushable

Dedicated keys for quick access to digital channels, serial analysis, math functions and reference waveforms

Demo and training signals

Integrated digital voltmeter
Configuring your InfiniiVision X-Series oscilloscope

Step 1. Choose your bandwidth and channel count.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth* (–3 dB)</td>
<td>70 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated rise time (10-90%)</td>
<td>≤ 5 ns</td>
<td>≤ 3.5 ns</td>
<td>≤ 1.75 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input channels</td>
<td>DSOX 2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MSOX 2 + 8</td>
<td>4 + 8</td>
<td>2 + 8</td>
<td>4 + 8</td>
<td>2 + 8</td>
<td>4 + 8</td>
</tr>
</tbody>
</table>

* For example, if you chose 100 MHz, 2+8 channels, the model number will be MSOX2012A.

Step 2. Tailor your scope with measurement applications to save time and money.¹

<table>
<thead>
<tr>
<th>Application</th>
<th>2000 X-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Megapoint memory upgrade</td>
<td>DSOX2MEMUP (-010)</td>
</tr>
<tr>
<td>Embedded serial triggering and analysis (I²C, SPI)</td>
<td>DSOX2EMBD (-LSS)*</td>
</tr>
<tr>
<td>Computer serial triggering and analysis (RS232/422/485/UART)</td>
<td>DSOX2COMP (-232)*</td>
</tr>
<tr>
<td>Automotive serial triggering and analysis (CAN, LIN)</td>
<td>DSOX2AUTO (-AMS)*</td>
</tr>
<tr>
<td>WaveGen (built-in function generator)</td>
<td>DSOX2WAVEGEN (-001)</td>
</tr>
<tr>
<td>Integrated digital voltmeter</td>
<td>DSOXDVM (-DVM)</td>
</tr>
<tr>
<td>Educator's kit</td>
<td>DSOXEDK (-EDK)</td>
</tr>
<tr>
<td>Mask testing</td>
<td>DSOX2MASK (-LMT)</td>
</tr>
<tr>
<td>Segmented memory</td>
<td>DSOX2SGM (-SGM)</td>
</tr>
<tr>
<td>InfiniView oscilloscope analysis software</td>
<td>N8900A</td>
</tr>
<tr>
<td>Keysight spectrum visualizer (ASV)</td>
<td>64997A</td>
</tr>
</tbody>
</table>

1. See pages 20-21 for more detailed information on upgradability, and installation process.

Step 3. Choose your probes²

<table>
<thead>
<tr>
<th>Probes</th>
<th>2000 X-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2862B 150 MHz 10:1 passive probe</td>
<td>Standard one per channel for 70 and 100 MHz models</td>
</tr>
<tr>
<td>N2863B 300 MHz 10:1 passive probe</td>
<td>Standard one per channel for 200 MHz models</td>
</tr>
<tr>
<td>N6459-60001 8-channel logic probe and accessory kit</td>
<td>Standard on MSO models or with DSOX2MSO upgrade</td>
</tr>
<tr>
<td>N2889A 350 MHz 10:1/1:1 passive probe</td>
<td>Optional</td>
</tr>
<tr>
<td>10070D 20 MHz 1:1 passive probe with probe ID</td>
<td>Optional</td>
</tr>
<tr>
<td>10076A 250 MHz 100:1, 4 kV high-voltage passive probe with probe ID</td>
<td>Optional</td>
</tr>
<tr>
<td>N2791A 25 MHz, ±700 V high-voltage differential probe</td>
<td>Optional</td>
</tr>
<tr>
<td>N2792A 200 MHz 10:1 differential probe</td>
<td>Optional</td>
</tr>
<tr>
<td>1146A 100 kHz, 100 A, AC/DC current probe</td>
<td>Optional</td>
</tr>
</tbody>
</table>

2. See page 20 for probe compatibility table. For more information on probes and accessories, see the Keysight literature 5968-8153EN

Step 4. Add the final touches.

<table>
<thead>
<tr>
<th>Recommended accessories</th>
<th>2000 X-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN/VGA connection module</td>
<td>DSOXLAN</td>
</tr>
<tr>
<td>GPIB connection module</td>
<td>DSOXGPIB</td>
</tr>
<tr>
<td>Rack mount kit</td>
<td>N6456A</td>
</tr>
<tr>
<td>Soft carrying case and front panel cover</td>
<td>N6457A</td>
</tr>
<tr>
<td>Hard copy manual</td>
<td>N6458A</td>
</tr>
<tr>
<td>Front panel cover (only)</td>
<td>N2747A</td>
</tr>
</tbody>
</table>
Performance characteristics

Specification overview

<table>
<thead>
<tr>
<th></th>
<th>2002A</th>
<th>2004A</th>
<th>2012A</th>
<th>2014A</th>
<th>2022A</th>
<th>2024A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (–3 dB)</td>
<td>70 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Calculated rise time (10-90%)”*</td>
<td>≤ 5 ns</td>
<td>≤ 3.5 ns</td>
<td>≤ 1.75 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input channels</td>
<td>DSOX</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MSOX</td>
<td>2 + 8</td>
<td>4 + 8</td>
<td>2 + 8</td>
<td>4 + 8</td>
<td>2 + 8</td>
</tr>
<tr>
<td>Maximum sample rate</td>
<td>2 GSa/s half-channel interleaved, 1 GSa/s per channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum memory depth</td>
<td>100 kpts per channel (standard), 1 Mpt per channel (optional with DSOX2MEMUP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display size and type</td>
<td>8.5-inch WVGA with 64 levels of intensity grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveform update rate</td>
<td>> 50,000 waveforms per second</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical system analog channels

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input coupling</td>
<td>AC, DC</td>
</tr>
<tr>
<td>Input sensitivity range</td>
<td>1 mV/div to 5 V/ div**</td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ ± 2% (11 pf)</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>8 bits (measurement resolution is 12 bits with averaging)</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>±8 divisions from center screen</td>
</tr>
<tr>
<td>Maximum input voltage</td>
<td>CAT I 300 Vrms, 400 Vpk; transient overvoltage 1.6 kVpk</td>
</tr>
<tr>
<td></td>
<td>CAT II 300 Vrms, 400 Vpk; with N2862B or N2863B 10:1 probe: 300 Vrms</td>
</tr>
<tr>
<td>DC vertical accuracy</td>
<td>±[DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale]**</td>
</tr>
<tr>
<td>DC vertical gain accuracy*</td>
<td>±3% full scale (≥ 10 mV/div); ±4% full scale (< 10 mV/div) **</td>
</tr>
<tr>
<td>DC vertical offset accuracy</td>
<td>±0.1 div ± 2 mV ±1% of offset setting</td>
</tr>
<tr>
<td>Channel-to-channel isolation</td>
<td>200 MHz ~ 1 GHz ≥ 40 dB from DC to maximum specified bandwidth of each model</td>
</tr>
<tr>
<td></td>
<td>1.5 GHz ≥ 40 dB from DC to 1 GHz, ≥ 35 dB from 1 GHz to 1.5 GHz</td>
</tr>
<tr>
<td>Position/offset range</td>
<td>1 MΩ</td>
</tr>
<tr>
<td></td>
<td>1 mV to 200 mV/div: ±2 V, > 200 mV to 5 V/div: ± 50V</td>
</tr>
<tr>
<td>Hardware bandwidth limits</td>
<td>Approximately 20 MHz (selectable)</td>
</tr>
</tbody>
</table>

Horizontal system analog channels

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time base range</td>
<td>5 ns/div to 50 s/div</td>
</tr>
<tr>
<td></td>
<td>2 ns/div to 50 s/div</td>
</tr>
<tr>
<td>Horizontal resolution</td>
<td>2.5 ps</td>
</tr>
<tr>
<td>Time base accuracy*</td>
<td>25 ppm ±5 ppm per year (aging)</td>
</tr>
<tr>
<td>Time base delay time range</td>
<td>Pre-trigger Greater of 1 screen width or 200 μs (400 μs in interleaving mode)</td>
</tr>
<tr>
<td></td>
<td>Post-trigger 1 s to 500 s</td>
</tr>
<tr>
<td>Channel-to-channel deskew range</td>
<td>± 100 ns</td>
</tr>
<tr>
<td>Δ Time accuracy (using cursors)</td>
<td>± (time base accuracy* reading) ± (0.0016 * screen width) ± 100 ps</td>
</tr>
</tbody>
</table>

* Denotes warranted specifications, all others are typical.

Specifications are valid after a 30-minute warm-up period and from ±10 °C firmware calibration temperature.

** 1 mV/div and 2 mV/div is a magnification of 4 mV/div setting. For vertical accuracy calculations, use full scale of 32 mV for 1 mV/div and 2 mV/div sensitivity setting.
Acquision modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Peak detect</td>
<td>Capture glitch as narrow as 500 ps at all timebase settings.</td>
</tr>
<tr>
<td>Averaging</td>
<td>Select from 2, 4, 8, 16, 64... to 65,536</td>
</tr>
<tr>
<td>High resolution</td>
<td>12 bits of resolution when ≥ 20 µs/div</td>
</tr>
<tr>
<td>Segmented</td>
<td>Re-arm time = 19 µs (minimum time between trigger events)</td>
</tr>
</tbody>
</table>

Trigger system

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger modes</td>
<td></td>
</tr>
<tr>
<td>– Normal (triggered): requires trigger event for scope to trigger</td>
<td></td>
</tr>
<tr>
<td>– Auto: triggers automatically in absence of trigger event</td>
<td></td>
</tr>
<tr>
<td>– Single: triggers only once on a trigger event, press [Single] again for scope to find another trigger event, or press [Run] to trigger continuously in either Auto or Normal mode</td>
<td></td>
</tr>
<tr>
<td>– Force: front panel button that forces a trigger</td>
<td></td>
</tr>
<tr>
<td>Trigger coupling</td>
<td>Coupling selections: AC, DC, noise reject, LF reject and HF reject.</td>
</tr>
<tr>
<td>Trigger source</td>
<td>Each analog channel, each digital channel (MSO models or DSOX2MSO upgrade, Ext, WaveGen, line)</td>
</tr>
<tr>
<td>Trigger sensitivity (internal)*</td>
<td>< 10 mV/div: greater of 1 div or 5 mV; ≥ 10 mV/div: 0.6 div</td>
</tr>
<tr>
<td>Trigger sensitivity (external)*</td>
<td>200 mV (DC to 100 MHz); 350 mV (100 MHz - 200 MHz)</td>
</tr>
<tr>
<td>External trigger input</td>
<td>Included on all models</td>
</tr>
</tbody>
</table>

Trigger type selections

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td>Trigger on a rising, falling, alternating or either edge of any source</td>
</tr>
<tr>
<td>Pulse width</td>
<td>Trigger on a pulse on a selected channel, whose time duration is less than a value, greater than a value, or inside a time range</td>
</tr>
<tr>
<td>– Minimum duration setting: 2 ns - 10 ns (depends on bandwidth)</td>
<td></td>
</tr>
<tr>
<td>– Maximum duration setting: 10 s</td>
<td></td>
</tr>
<tr>
<td>Pattern</td>
<td>Trigger when a specified pattern of high, low, and don’t care levels on any combination of analog, digital, or trigger channels is [entered</td>
</tr>
<tr>
<td>Video</td>
<td>Trigger on all lines or individual lines, odd/even or all fields from composite video, or broadcast standards (NTSC, PAL, SECAM, PAM-M)</td>
</tr>
<tr>
<td>I²C (optional)</td>
<td>Trigger on I²C (Inter-IC bus) serial protocol at a start/stop condition or user defined frame with address and/or data values. Also trigger on missing acknowledge, address with no accq, restart, EEPROM read, and 10-bit write.</td>
</tr>
<tr>
<td>SPI (optional)</td>
<td>Trigger on SPI (Serial Peripheral Interface) data pattern during a specific framing period. Supports positive and negative Chip Select framing as well as clock Idle framing and userspecified number of bits per frame.</td>
</tr>
<tr>
<td>CAN (optional)</td>
<td>Trigger on CAN (controller area network) version 2.0A and 2.0B signals. Trigger on the start of frame (SOF) bit (standard). Remote frame ID (RTR), data frame ID (~RTR), remote or data frame ID, data frame ID and data, error frame, all errors, acknowledge error and overload frame.</td>
</tr>
</tbody>
</table>

* Denotes warranted specifications, all others are typical.

Specifications are valid after a 30-minute warm-up period and from ±10 °C firmware calibration temperature.
Performance characteristics (continued)

<table>
<thead>
<tr>
<th>LIN (optional)</th>
<th>Trigger on LIN (Local Interconnect Network) sync break, sync frame ID, or frame ID and data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232/422/485/UART (optional)</td>
<td>Trigger on Rx or Tx start bit, stop bit or data content</td>
</tr>
</tbody>
</table>

Cursors

<table>
<thead>
<tr>
<th>Types</th>
<th>Amplitude, time, frequency (FFT), manual, tracking, binary, HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>(\Delta T, 1/\Delta T, \Delta V/X, 1/\Delta X, \Delta Y, \text{Phase and Ratio})</td>
</tr>
</tbody>
</table>
| Cursors** | - Single cursor accuracy: \(\pm [\text{DC vertical gain accuracy} + \text{DC vertical offset accuracy} + 0.25\% \text{ full scale}]\)
- Dual cursor accuracy: \(\pm [\text{DC vertical gain accuracy} + 0.5\% \text{ full scale}]^*\) |

Automatic waveforms measurements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Snapshot all, maximum, minimum, peak-to-peak, top, base, amplitude, overshoot, preshoot, average-(N) cycles, average-full screen, DC RMS-(N) cycles, DC RMS-full screen, AC RMS-(N) cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Period, frequency, rise time, fall time, + width, – width, duty cycle, delay (A\rightarrow B) (rising edge), delay (A\rightarrow B) (falling edge), phase (A\rightarrow B) (rising edge,) and phase (A\rightarrow B) (falling edge)</td>
</tr>
</tbody>
</table>

Waveform math

<table>
<thead>
<tr>
<th>Operators</th>
<th>Add, subtract, multiply, FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>Windows: Hanning, flat top, rectangular; Blackman-Harris - up to 64 kpts resolution</td>
</tr>
</tbody>
</table>

Display characteristics

<table>
<thead>
<tr>
<th>Display</th>
<th>8.5-inch WVGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>800 (H) x 480 (V) pixel format (screen area)</td>
</tr>
<tr>
<td>Interpolation</td>
<td>Sin(x)/x interpolation (using FIR filter; used when there is less than one sample per column of the display)</td>
</tr>
<tr>
<td>Persistence</td>
<td>Off, infinite, variable persistence (100ms-60s)</td>
</tr>
<tr>
<td>Intensity gradation</td>
<td>64 intensity levels</td>
</tr>
</tbody>
</table>

MSO (digital channels)

<table>
<thead>
<tr>
<th>Upgradable from DSO</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSO channels</td>
<td>8 channels (D0 to D7)</td>
</tr>
<tr>
<td>Maximum sample rate</td>
<td>1 GSa/s</td>
</tr>
</tbody>
</table>
| Maximum record length | 500 kpts per channel (digital channels only)
125 kpts per channel (analog and digital channels) |
| Threshold selections | TTL (+1.4 V), CMOS (+2.5 V), ECL (-1.3 V), User-definable (+8.0 V in 10 mV stops) |
| Threshold accuracy* | \(\pm (100 \text{ mV} + 3\% \text{ of threshold settings})\) |
| Maximum input dynamic range | \(\pm 10 \text{ V} \text{ about threshold}\) |
| Minimum voltage swing | 500 mVpp |
| Input impedance | 100 k\(\Omega\) ± 2\% at probe tip, ~8 pF |
| Minimum detectable pulse width | 5 ns |
| Channel-to-channel skew | 2 ns (typical), 3 ns (maximum) |

* Denotes warranted specifications, all others are typical.
Specifications are valid after a 30-minute warm-up period and from \(\pm 10 \text{ °C}\) firmware calibration temperature.
** 1 mV/div and 2 mV/div is a magnification of 4 mV/div setting. For vertical accuracy calculations, use full scale of 32 mV for 2 mV/div sensitivity setting.
WaveGen – built-in function generator (specifications are typical)

<table>
<thead>
<tr>
<th>Waveforms</th>
<th>Sine, square, pulse, triangle, ramp, noise, DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine</td>
<td>Frequency range: 0.1 Hz to 20 MHz</td>
</tr>
<tr>
<td></td>
<td>– Amplitude flatness: ±0.5 dB (relative to 1 kHz)</td>
</tr>
<tr>
<td></td>
<td>– Harmonic distortion: –40 dBc</td>
</tr>
<tr>
<td></td>
<td>– Spurious (non harmonics): –40 dBc</td>
</tr>
<tr>
<td></td>
<td>– Total harmonic distortion: 1%</td>
</tr>
<tr>
<td></td>
<td>– SNR (50 ohm load, 500 MHz BW): 40 dB (Vpp ≥ 0.1 V); 30 dB (Vpp <0.1 V)</td>
</tr>
<tr>
<td>Square wave/pulse</td>
<td>Frequency range: 0.1 Hz to 10 MHz</td>
</tr>
<tr>
<td></td>
<td>– Duty cycle: 20 to 80%</td>
</tr>
<tr>
<td></td>
<td>– Duty cycle resolution: Larger of 1% or 10 ns</td>
</tr>
<tr>
<td></td>
<td>– Pulse width: 20 ns minimum</td>
</tr>
<tr>
<td></td>
<td>– Pulse width resolution: 10 ns or 5 digits, whichever is larger</td>
</tr>
<tr>
<td></td>
<td>– Rise/fall time: 18 ns (10 to 90%)</td>
</tr>
<tr>
<td></td>
<td>– Overshoot: < 2%</td>
</tr>
<tr>
<td></td>
<td>– Asymmetry (at 50% DC): ±1% ± 5 ns</td>
</tr>
<tr>
<td></td>
<td>– Jitter (TIE RMS): 500 ps</td>
</tr>
<tr>
<td>Ramp/triangle wave</td>
<td>Frequency range: 0.1 Hz to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>– Linearity: 1%</td>
</tr>
<tr>
<td></td>
<td>– Variable symmetry: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>– Symmetry resolution: 1%</td>
</tr>
<tr>
<td>Noise</td>
<td>Bandwidth: 20 MHz typical</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sine wave and ramp accuracy:</td>
</tr>
<tr>
<td></td>
<td>– 130 ppm (frequency < 10 kHz)</td>
</tr>
<tr>
<td></td>
<td>– 50 ppm (frequency > 10 kHz)</td>
</tr>
<tr>
<td></td>
<td>Square wave and pulse accuracy:</td>
</tr>
<tr>
<td></td>
<td>– [50+frequency/200] ppm (frequency < 25 kHz)</td>
</tr>
<tr>
<td></td>
<td>– 50 ppm (frequency ≥ 25 kHz)</td>
</tr>
<tr>
<td></td>
<td>– Resolution: 0.1 Hz or 4 digits, whichever is larger</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Range:</td>
</tr>
<tr>
<td></td>
<td>– 20 mVpp to 5 Vpp into Hi-Z</td>
</tr>
<tr>
<td></td>
<td>– 10 mVpp to 2.5 Vpp into 50 ohms</td>
</tr>
<tr>
<td></td>
<td>– Resolution: 100 μV or 3 digits, whichever is larger</td>
</tr>
<tr>
<td></td>
<td>– Accuracy: 2% (frequency = 1 kHz)</td>
</tr>
<tr>
<td>DC offset</td>
<td>Range:</td>
</tr>
<tr>
<td></td>
<td>– ±2.5 V into Hi-Z</td>
</tr>
<tr>
<td></td>
<td>– ±1.25 V into 50 ohms</td>
</tr>
<tr>
<td></td>
<td>– Resolution: 100 μV or 3 digits, whichever is larger</td>
</tr>
<tr>
<td></td>
<td>– Accuracy: ±1.5% of offset setting ±1.5% of amplitude ±1 mV</td>
</tr>
<tr>
<td>Trigger output</td>
<td>Trigger output available on Trig out BNC</td>
</tr>
</tbody>
</table>

Performance characteristics (continued)
Performance characteristics (continued)

<table>
<thead>
<tr>
<th>WaveGen – built-in function generator (specifications are typical) (Continued)</th>
</tr>
</thead>
</table>
| **Modulation** | Modulation types: AM, FM, FSK
Carrier waveforms: sine, ramp
Modulation source: Internal (no external modulation capability) |
| **AM:** | Modulation waveform: sine, square, ramp
Modulation frequency (1 Hz to 20 kHz)
Depth: 0% to 100% |
| **FM:** | Modulation: sine, square, ramp (1 Hz to 20 kHz)
Modulation frequency (1 Hz to 20 kHz)
Minimum carrier frequency: 10 kHz
Minimum deviation: 1 Hz
Maximum deviation: 100 kHz or (carrier frequency - 9 kHz), whichever is smaller. |
| **FSK:** | Modulation: 50% duty cycle square wave
FSK rate: 1 Hz to 20 kHz
Minimum carrier frequency: 10 kHz
Minimum hop frequency: 2 * FSK rate |

<table>
<thead>
<tr>
<th>Integrated Digital Voltmeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Measuring rate</td>
</tr>
<tr>
<td>Autoranging</td>
</tr>
<tr>
<td>Range meter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement range (specifications are typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
</tr>
</tbody>
</table>
| ACrms | 20 Hz - 100 kHz | 100 MHz to 500 MHz: 1 mV/div to 5 V/div** (1 MO and 50 Ohm)
1 GHz model: 1 mV/div to 5 V/div** (1 MO), 1 mV/div to 1 V/div (50 Ohm) | [DC vertical gain accuracy + 0.5% full scale] |
| DCRms | 20 Hz - 100 kHz | [DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale] | |
| DC | NA | [DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale] |
| Frequency counter | 1 Hz – BW of Scope | <10 mV/div: greater of 1 div or 5 mV; ≥ 10 mV/div: 0.6 div | 25 ppm ± 5 ppm per year (aging) |
InfiniiVision X-Series physical characteristics

Connectivity

<table>
<thead>
<tr>
<th>Standard ports</th>
<th>One USB 2.0 hi-speed device port on rear panel. Supports USBTMC protocol.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two USB 2.0 hi-speed host ports, front and rear panel. Supports memory devices, printers and keyboards.</td>
</tr>
</tbody>
</table>

| Optional ports | GPIB, LAN, WVGA video out |

General and environmental characteristics

<table>
<thead>
<tr>
<th>Power line consumption</th>
<th>100 watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power voltage range</td>
<td>100-120V, 50/60/400 Hz; 100-240V, 50/60 Hz ±10% auto ranging</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating: 0 to +55 °C; Non-operating: -30 to +71 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>Operating: Up to 80% RH at or below +40 °C; up to 45% RH up to +50 °C; Non-operating: Up to 95% RH up to 40 °C; up to 45% RH up to 50 °C</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating: up to 4,000 m, Non-operating 15,300 m</td>
</tr>
<tr>
<td>Safety</td>
<td>UL61010-1 2nd edition, CAN/CSA22.2 No. 61010-1-04</td>
</tr>
<tr>
<td>Dimensions</td>
<td>381 mm (15 in) W x 204 mm (8 in) H x 142 mm (5.6 in) D</td>
</tr>
<tr>
<td>Weight</td>
<td>Net: 3.9 kg (8.5 lbs), shipping: 4.1 kg (9.0 lbs)</td>
</tr>
</tbody>
</table>

Nonvolatile storage

Reference waveform display	2 internal waveforms or USB thumb drive
Waveform storage	Set up, .bmp, .png, .csv, ASCII, XY, reference waveforms, .alb, .bin, lister, mask, HDFS
Max USB flash drive size	Supports industry standard flash drives
Set ups without USB flash drive	10 internal setups
Set ups with USB flash drive	Limited by size of USB drive

Included standard with oscilloscope

| Standard 5-year warranty* (90 days for unserialized accessories) |
| Standard secure erase |
| Standard Probe |
N2862B 150 MHz 10:1 passive probe	Standard one per channel for 70 and 100 MHz models
N2863B 300 MHz, 10:1 passive probe	Standard one per channel for 200 MHz models
N6459-60001 8-channel logic probe and accessory kit	Standard on MSO models or with DSOX2MSO upgrade
Built-in help language support for English, Japanese, simplified Chinese, traditional Chinese, Korean, German, French, Spanish, Russian, Portuguese and Italian, Certificate of Calibration, Documentation CD	
Interface language support GUI menus: English, Japanese, simplified Chinese, traditional Chinese, Korean, German, French, Spanish, Russian, Portuguese, Thai, Polish and Italian	

Localized power cord

*Applies to all orders on or after 1/1/2013.

For MET/CAL procedures, click on the Cal Labs solutions link below Cal Labs Solutions

http://www.callabsolutions.com/products/Keysight/

These procedures are FREE to customers.
License-only bandwidth upgrades and measurement applications

<table>
<thead>
<tr>
<th>Bandwidth upgrade models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 X-Series</td>
</tr>
<tr>
<td>DSOX2BW12</td>
</tr>
<tr>
<td>DSOX2BW14</td>
</tr>
<tr>
<td>DSOX2BW22</td>
</tr>
<tr>
<td>DSOX2BW24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOX2MEMUP</td>
</tr>
<tr>
<td>DSOX2COMP</td>
</tr>
<tr>
<td>DSOX2AUTO</td>
</tr>
<tr>
<td>DSOX2EMBD</td>
</tr>
<tr>
<td>DSOX2WAVEGEN</td>
</tr>
<tr>
<td>DSOXDVM</td>
</tr>
<tr>
<td>DSOXEDK</td>
</tr>
<tr>
<td>DSOX2MASK</td>
</tr>
<tr>
<td>DSOX2SGM</td>
</tr>
<tr>
<td>DSOX2MSO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Keysight Technologies Oscilloscopes
Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

Keysight’s commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.