SPECIFICATION

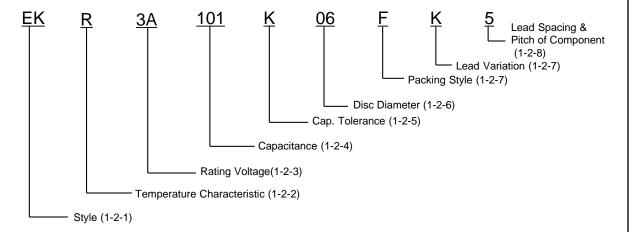
JL. RAYA SUBANG CIKUMPAY
CAMPAKA-PURWAKARTA
JAWA BARAT - INDONESIA

SPECIFICATION

ITEM: DISC CERAMIC CAPACITOR (Capacitor R SERIES)

PT. SAMCON							
Written	Checked	Approved					
J. Mary		An					
Irman Sudirman	Apang Djafar S.	Kim Jae Min					
	TME						

2025.10.16


	i	SW-D02-06C					
	Г				2/12		
	P/N	SAMWHA SPEC		P/N SAMWHA SPE		HA SPEC	
	- EKR3A101K06FK5 - EKR3A102K09FK5 - EKR3A221K06FK5 - EKR3A222K12FF7			- - -		EKR3F101K06FF7 EKR3F221K07FF7 EKR3F471K10FF7 EKR3J101K07FF7 EKR3J221K07FF7	
	- - - -	EKR3A471K07FK5 EKR3D101K06FK5 EKR3D102K11FK5 EKR3D221K07FK5 EKR3D222K15FF7 EKR3D471K10FK5		- EKR3J471K10		71K10FF7	
No	Reason	Contents	Contents			necked	Remark
1	RoHS Free	1) P.6/12 4. Solder Heat Resistance 2) P.6/12 6. The regulation of environmental pollution materials	05.11.10				
2	Material Change	Material wire from Cu wir (Sn-Cu) to Cp wire (Sn-Cu-Fe)	е	08.01.01			
3	Add Soldering Profile	Flow Soldering & Iron Sol	dering	10.11.15			
4	Drawing & Dimension of Taping Style	Hold Down Tape Width (V	Vo)	12.05.01			
5	Electrical Performance	Dielectric Strength & Boo Insulation Condition. P. 5/	12.06.07				

Reform	STANDARD	No	SW-D02-06C
2008. Feb.	Low Loss Ceramic Capacitor	Page	3/12

1. Scope.

This specification relates low loss ceramic capacitor for use in high frequency and high power circuit.

1-1. Type Designation

1-2. Specification

1-2-1. Style

EK: Epoxy coated high dielectric constant fixed ceramic capacitor (Class II).

1-2-2. Capacitance Temperature Characteristic

Operating Temperature : -25°C ~ +85°C

Test Condition

Step	Temp				
1	20 ± 2°C				
2	Min Operating Temp				
3	20 ± 2°C				
4	Max Operating Temp				
5	20 ± 2°C				

Judgment

T.C	Temp. Range	Change Rate
R Type	-25°C~ +85°C	-15% ~ +15%

^{*} Operating temperature range guaranteed up to 125 degrees

1-2-3. Rating Voltage

3A:1 kV, 3D:2 kV, 3F:3.15 kV, 3J:6.3 kV.

1-2-4. Nominal Capacitance

The nominal capacitance value in pF is expressed by three digit number.

The first, two digits represent significant figures and the last digit is the number of zero to follow.

Ex) 101:100pF

Note : Pre-treatment : max operating temp $\pm 2^{\circ}$ C heating and maintain 1hr, and release 24 \pm 2hr at room condition, using LCR meter.

1-2-5. Capacitance Tolerance.

 $D: \pm 0.5 pF, G: \pm 2\%, J: \pm 5\%, K: \pm 10\%, M: \pm 20\%, Z: -20/+80\%$

1-2-6.Disc Diameter

(Unit: mm max)

Code	06	07	08	09	10	11	12	13	14	15	16	17	18	20
Dia (mm)	6.3	7	8	9	10	11	12.5	13	14	15	16	17	18	20

1-2-7. Packing Style and Lead Variation

	Packing Style	Lead Variation		
		K	In-kink Type	
F	Taping Type Flat Pack	F	Out-Forming Type	
		S	Straight Long Type	
	Bulk	K	Forming Long Type	
В		S	Straight Long Type	
D		W/L	Forming Short Type	
		N	Straight Short Type	

1-2-8. Lead Spacing & Pitch of Component: [mm] (see pages 8/12~10/12)

5 : F=5.0 , P=12.7 (Bulk or Taping) 1 : F=10.0 , P=25.4 (Bulk or Taping)

7 : F=7.5 , P=15.0 (Bulk or Taping) 2 : F=10.0 , P=30.0 (Taping)

8 : F=7.5 , P=30.0 (Taping)

9: F=7.5, P=25.4 (Taping)

2. Electrical Performance

2-1. Capacitance

Capacitance shall be within the specified tolerance when measured at temperature of $20^{\circ}C\pm2^{\circ}C$, 1 ± 0.2 kHz(R)> with 1Vrms

2-2. Dissipation Factor ($\tan \delta$)

Measured at 1±0.1kHz(R), 1Vrms and 20°C±2°C

T.C	R Type
tan δ	0.2% max

SW-D02-06C

5/12

2-3. Insulation Resistance

Insulation resistance shall exceed 10000 M Ω when measured after 1 minute charge with 500 VDC.

2-4. Dielectric Strength(Between Lead Wires)

For dielectric strength, the capacitor should be following table below 1 ~ 5sec:

Rating Voltage (R.V)	500V DC	1~2kV DC	3kV DC	6kV DC
Testing Voltage (T.V)	R.V x 2.5	R.V x 2	R.V x 1.5	R.V x 1.5

The discharge current, however was 50mA or less. (*3J: Lead spacing(FS7):AC4.5kv/10mA)

2-5. Body Insulation

The Capacitors shall not be damaged when 1.3 KV DC Voltage applied for 1 to 50sec. both connected leads and body.

* Special Note.

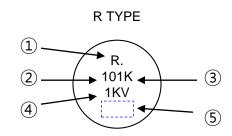
we produced a special FS7 (Lead Spacing 7.5mm), ambient temperature, relative humidity measured in the high-voltage lead terminal and the terminals arc occurs when factors(Spark phenomena), in this case Insulation oil ceramic capacitor using the BDV.(Brake Down Voltage) is measured.

2-6. Others

No	Item		Requir	ement	Test Conditions	
		Appearance)	No. visible damage	Toron contract (405 + 200(P))	
		Cap. Change	R	± 10% max	 Temperature : 125±3°C(R) Applied Voltage : 1.5 times rated voltage 	
		tan δ	R	0.4% max	 Period of test: 1000 +48, -0 hours 	
1	Life Test	I.R		1000 MΩ min	*Note Test sample is must it, Lead spacing min 10.0mm< Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition for 24±2 hrs. before initial measurement. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition	
		Appearance)	No. visible damage	Set the capacitor for 500 +24/-0 hrs. at	
	Humidity 2 (Under Steady State)			± 10% max	40±2°C in 90 to 95% relative humidity. Pre-treatment:	
				0.4% max	Capacitor should be stored at 125±3°C	
2		I.R		1000 MΩ min	for 1 hr., then placed at room condition for 24±2 hrs. before initial measurement. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition	
		Appearance		No. visible damage	Apply the rated voltage for 500 +24/-0 hrs. at	
		Cap. Change	R	± 10% max	40±2°C in 90 tp 95% relative humidity. (Charge/Discharge ≦ 50mA)	
		tan δ	R	0.6% max	Pre-treatment :	
3	3 Humidity Loading		I.R		1000 MΩ min	Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition for 24±2hrs. Before initial measurement. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition *Note Test sample is must it, Lead spacing min 10.0mm<

SW-D02-06C

6/12


3. Mechanical Test and Environmental Substance

No	Item		Requi	rement			Test Conditions		
		Capacitors shall follows :	not be da	amaged, whe	en tested as	t	The load in table shall be applied gradually to the terminal in its draw-out direction and held		
1.	Lead Pull Test	Lead D	ia	L	_oad	t	hus for 1 to 5 sec		
		0.50 ~ 0.8	mm	1	.0 kg				
		Capacitors shall tested as follows		not be damaged or broken, when		The Capacitor shall be held so that dra axis of the lead is kept vertical and lo			
2.	Lead Terminal Bending Test	Lead D	ia	L	_oad		eft table shall be bent 90°and returned its original position in 5 sec.		
	bending rest	0.50 ~ 0.8	mm	0	.5 kg	(Then the body shall be bent 90° to opposite direction and returned to its original position in the same speed.		
3.	Solderability	The lead wire coated on the circumferential di	axial dii			- F - S - I	Flux : Solution of rosin in 25% Solder temp : $230 \pm 5^{\circ}C$ mmersion time : 2 ± 0.5 sec. mmersion depth : up to $3 \sim 4$ mm from the root of terminals		
		Appearance	e	No. visit	ble damage	- 5	Solder temp. : 260-0, -5°C		
		Cap. Change	R	± 10	0% max	– I	mmersion time :5 sec		
4.	Solder Heat Resistance	I.R	R	Initial test must be min 10000 $M\Omega$ and after test must be min 1000 $M\Omega$					
		Dielectric Stre	ngth	No.	Failure				
		Appearance	е	No. visible damage			The capacitor should be firmly soldered to the		
5.	Vibration Resistance	Cap. Change	R Within specified tolerance		supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1-minute rate of vibration change				
	resistance	Tan δ		0.39	% max	from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6hrs., 2hrs. Each in mutually perpendicular directions.			
		Flow Soldering	Т	Item emp.(°C) 260 200 160 100	Pre-heating		Soldering Cooling 260 +0, -5		
6.	Soldering Profile	Tiow condoming	When soldering this product to a Pcb / Pwb, do not exceed the solder heat resista specification of capacitor. Subjecting this product to excessive heating could melt internal junction solder and may result in thermal shocks that can crack the cera element.						
		Iron Soldering	When soldering capacitor with a soldering capacitor iron, it should be performed following conditions. Temperature of iron-tip : 400°C max. Soldering iron wattage : 50W max. Soldering time : 3.5 sec. max. Failure to follow the above cautions may result, worst case, in a short circuit a cause fuming or partial dispersion when the product is used						
7.	The Regulation of Pollution								
8.	Preservatio	n (keeping)	When solderablility is considered, capacitors are recommended to be used in 12 months (1)Temperature : 30°C ± 10°C (2)Relative Humidity : 55% ± 25						

4. Standard Test Condition

Temperature : $20 \pm 2^{\circ}$ C Humidity : $65 \pm 5\%$ R.H

5. Marking

No.	EXAM.	ITEM	REMARK
1	R.	Temp. characteristic	
2	101	Capacitance	
3	К	Cap. tolerance	04~05Φ: Omitted
4	1KV	Rated voltage	
5	SWC	Manufacturer 's code	10Ф>: Omitted, 10~20Ф : SWC

Note: For series R, diameter below than 9 mm use sign dot (R.), for diameter over than 9 not use dot (R) after R.

6. Enclosure

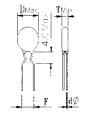
Capacitors are coated by non-flammable Epoxy Powder resin. (Conform UL94V-0)

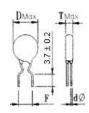
7. Style and Dimensions

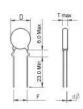
1) Bulk In-kink Type (F:5.0)

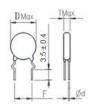
Out-kink Type (F:7.5, 10.0)

Straight Type

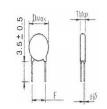

Long Type (BK)

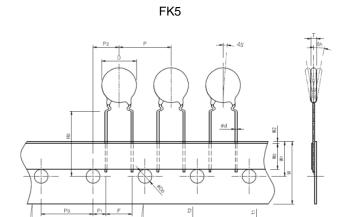

Short Type (BW)


Long Type (BK) Short Type (BW)

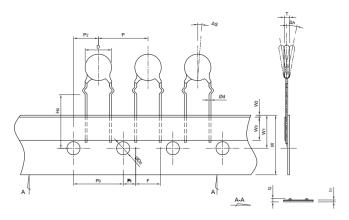

Long Type (BS)

Short Type (BN)





Rating voltage	Capacitance (pF)		Dimensions (mm)				
	Y5R	D max	T max	F ± 1.0	d(φ)±0.0		
	100, 150, 220, 270, 330, 390	6.3	5.0	5.0	0.50		
	470	7.0	5.0	5.0	0.50		
	560, 680	8.0	5.0	5.0	0.50		
	820, 1000	9.0	5.0	5.0/7.5	0.50/0.6		
	1200	10.0	5.0	5.0/7.5	0.50/0.6		
1 KV	1500	11.0	5.0	5.0/7.5	0.50/0.6		
	2200*)	12.5	5.0	5.0, 7.5	0.50/0.6		
	1800, 2200, 2700	14.0	5.0	7.5/10.0	0.60		
	3300	15.0	5.0	10.0	0.60		
	3900	17.0	5.0	10.0	0.60		
	4700	18.0	5.0	10.0	0.60		
	100, 120	6.3	5.0	5.0/7.5	0.50/0.6		
	150, 220, 270	7.0	5.0	5.0/7.5	0.50/0.6		
	330,390	8.0	5.0	5.0/7.5/10.0	0.50/0.6		
	470, 560, 680	10.0	5.0	5.0/7.5/10.0	0.50/0.6		
0.107	820, 1000	11.0	5.0	5.0/7.5/10.0	0.50/0.6		
2 KV	1200	12.5	5.0	7.5/10.0	0.60		
	1500	14.0	5.0	7.5/10.0	0.60		
	1800, 2200	15.0	5.0	10.0	0.60		
	2700	17.0	5.0	10.0	0.60		
	3300	18.0	5.0	10.0	0.60		
	100	6.3	6.0	5.0/7.5	0.50/0.6		
	150, 180, 220, 270	7.0	6.0	5.0/7.5	0.50/0.6		
	330,390	8.0	6.0	5.0/7.5	0.50/0.6		
010.1	470,560,680	10.0	6.0	7.5/10.0	0.60		
3KV	820,1000	12.5	6.0	10.0	0.60		
	1200,1500	14.0	6.0	10.0	0.60		
	1800	16.0	6.0	10.0	0.60		
	2200,2700	18.0	6.0	10.0	0.60		
	100, 150, 180, 220, 270	7.0	6.0	7.5/10.0	0.60		
	330,390	8.0	6.0	7.5/10.0	0.60		
	470,560,680	10.0	6.0	7.5/10.0	0.60		
6.3 KV	820,1000	12.5	6.0	10.0	0.60		
	1200,1500	14.0	6.0	10.0	0.60		
	1800	16.0	6.0	10.0	0.60		
	2200,2700	18.0	6.0	10.0	0.60		


2) Taping

[Unit : mm]

		TAPING	
ITEM	SYMBOL	SPECIFICATION	NOTE
		FK5	
Body Diameter	D	11.0 Max	
Body Thickness	Т	5.0 Max	
Lead Diameter	Фd	0.50 ± 0.05	
Pitch of Sprocket Hole	Po	12.7 ± 0.3	Accumulative.pitch error : ± 1mm/20pitch
Pitch of Component	Р	12.7 ± 1.0	
Lead Length from Hole Center to Lead	P1	3.85 ± 0.7	
Lead Length from Hole Center to Component Center	P2	6.35 ± 1.3	
Lead Spacing	F	5.0 + 0.8 - 0.2	
Deviation Along Tape	△S	0 ± 1.0	
Deviation Across Tape	△h	0 ± 2.0	
Carrier Tape Width	W	18.0 + 1.0 - 0.5	
Hold Down Tape Width	Wo	6.0 Min	
Position of Sprocket Hole	W1	9.0 ± 0.5	
Hold Down Tape Position	W2	3.0 Max	
Diameter of Sprocket Hole	Ф Do	4.0 ± 0.2	
Lead-Wire Clinch Height	Но	16.0 ± 0.5	
Total Tape Thickness	t ₁	0.7 ± 0.2	
Total Thickness, Tape and Lead Wire	t ₂	1.5 Max	

FF7

[Unit : mm]

ITEM	SYMBOL	TAPING SPECIFICATION	NOTE
ITEW	STIVIBOL	FF7	NOTE
Body Diameter	D	15.0 Max	
Body Thickness	Т	6.0 Max	
Lead Diameter	Фd	0.60 ± 0.05	
Pitch of Sprocket Hole	Po	15.0 ± 0.3	
Pitch of Component	Р	15.0 ± 1.0	
Lead Length from Hole Center to Lead	P1	3.75 ± 1.0	
Lead Length from Hole Center to Component Center	P2	7.5 ± 1.5	
Lead Spacing	F	7.5 ± 1.0	
Deviation Along Tape.Left or Right	△S	0 ± 1.0	
Deviation Across Tape	△h	0 ± 2.0	
Carrier Tape Width	W	18.0 + 1.0 - 0.5	
Hold Down Tape Width/Masking Tape Width	Wo	8.0 min	
Position of Sprocket Hole	W1	9.0 ± 0.5	
Hold Down Tape Position	W2	3.0 Max	
Lead-Wire Clinch Height	Но	16.0 ± 0.5	
Height of Component Hole	Н	20.0 + 1.5 - 1.0	
Diameter of Sprocket Hole	ФДо	4.0 ± 0.2	
Total Tape Thickness	t ₁	0.7 ± 0.2	
Total Thickness, Tape and Lead Wire	t ₂	1.7 Max	

■ PACKING SPECIFICATION

1) BULK

TY	/PE	PACKING QUANTITY [pcs]							
DI) ((0)0)	DIVISION DIVISION [mm]		DIAMETER INNER BOX			OUT BOX			
DIVISION			VINIL P	APERBAG	IBB 140	OBB 150	OBB 300		
		~ 8	F: 5.0	1,000 + 3, - 0	10,000	-	40,000		
			F: 7.5, 10.0	500 + 2, - 0	4,000	-	16,000		
		9 ~ 10	F: 5.0	500 + 2, - 0	5,000	-	20,000		
	Long		F: 7.5, 10.0	500 + 2, - 0	4,000	-	16,000		
		11 ~ 12	500	+ 2, - 0	4,000	-	16,000		
1 ~ 2 KV		13 ~ 16	500	+ 2, - 0	2,500	-	10,000		
1~2KV		17 ~ 20	400	+ 1, - 0	2,000	-	8,000		
		~ 8	1,000	1,000 + 3, - 0		20,000	-		
		9 ~ 10	F: 5.0	1,000 + 3, - 0	10,000	20,000	-		
	Short	9~10	F: 7.5, 10.0	500 + 2, - 0	10,000	20,000	-		
		11 ~ 16	500 + 2, - 0		5,000	10,000	-		
		17 ~ 20	500 + 2, - 0		4,000	8,000	-		
		~ 7			5,000	-	20,000		
		8 ~ 11			4,000	-	16,000		
	Long	12 ~ 14	500	+ 2, - 0	3,000	6,000	-		
		15 ~ 16			2,500	5,000	-		
2 0101		17 ~ 20	200	+ 1, - 0	2,000	4,000	=		
3 ~ 8 KV		~ 9	500	+ 2, - 0	10,000	20,000	=		
		10 ~ 11	500	+ 2, - 0	7,500	15,000	=		
	Short	12 ~ 14	500	+ 2, - 0	5,000	10,000	=		
		15 ~ 16	500	+ 2, - 0	4,000	8,000	-		
		17 ~ 20	200	+ 1, - 0	2,000	4,000	-		

PACKING SPECIFICATION

2) TAPING

	F			DIAM	ETER	VOLTAGE	вох	PACKING QUAN	ITITY [pcs]		
DIVISION	[mm]	TYPE	PITCH		Þ]	[V]	H [mm]	IBR	OBR		
	5.0	FK5 FF5	12.7	ALL		ΚV	52	2,000 + 5, - 0	10,000		
		FF7	15.0	14.0↓	~10			1,500 + 5, - 0	7,500		
~2 KV	7.5	117	15.0	14.01	12~	KV	KV	KV	52	1,300 + 5, - 0	6,500
		FF8	30.0	15	15.0↑			700 + 5, - 0	3,500		
		FF9	25.4	AL	LL			700 + 5, - 0	3,500		
	10.0	FF1, FF2		ALL		-	52	700 + 5, - 0	3,500		
		FF7	15.0	14	.0↓			1,000 + 5, - 0	5,000		
	7.5	FF8	30.0	15	.0↑			600 + 5, - 0	3,000		
3 KV~		FF9	25.4	ALL		ΚV	52	600 + 5, - 0	3,000		
	40.0	FF1	25.4	ALL				600 + 5, - 0	3,000		
	10.0	FF2	30.0					500 + 5, - 0	2,500		

• ETC

EKR 3D 101K 06 FK5 = 1,500 + 5, -0 (IN), 7,500 (OUT)

EKR 3D 151K 07 FK5 = 1,500 + 5, - 0 (IN), 7,500 (OUT)

3) PACKING BOX DIMENSIONS

PACKING	G STYLE	CATEGORY	$L \times W \times H$ [mm]	
BULK	IBB (Inner Box Bulk)	IBB 140	250 × 235 × 130	
	OBB (Out Box Bulk)	OBB 150 (IBB 140 × 2)	485 × 265 × 145	
TADING	INNER BOX	IBR 52	325 × 280 × 55	
TAPING	OUT BOX	OBR 52 (IBR 52 × 5)	340 × 310 × 290	

4) STACKING BOX (Maximum)

PACKING STYLE	INBOX	OUTBOX
BULK	6	6
TAPING	10	6

MATERIAL LIST

NO	Material Name	Substance	Hazardous Substance Existences					Remarks	
	INO IVIALETIAI INATTIE	Oubstance	Pb	Hg	Cr	Cr+6	PBB	PBDE	Komarks
1	Dielectric Powder	Bi, Sr, Ti	х	х	х	х	Х	Х	Exception for R-Series (Based on RoHS data)
2	Ag Paste	Ag	Х	Х	Х	Х	Х	Х	
3	Solder	Sn,Ag,Cu	Х	Х	Х	Х	Х	х	
4	Epoxy resin	Ероху	Х	Х	Х	Х	Х	Х	
5	Lead wire	Cu, Sn, Fe	х	х	х	Х	Х	х	Plating thickness: min 3μm. (material : tin)

► Notice (Storage and Operating Condition)

Operating and Storage Environment the insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%. Use capacitors within 12 months after delivery.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

► Notice (Capacitance change of capacitors)

For some of the capacitors, capacitance value may change considerably in the temperature range, or by applied DC voltage. and capacitor has aging characteristics (capacitance decreases by keeping as it is)

■ Label Type

■ Bulk Style

	BULK TYPE	
PLASTIC	INBOX	OUTBOX
The state of the s	SALVIA SALVIA SALVIA	THE

■ Taping Style

	TAPING TYPE						
PLASTIC	INBOX	оитвох					
	Account of the second of the s						

Notices:

▶ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in ac or ripple current circuits, be sure to maintain the V_{p-p} value of the applied voltage or the V_{0-p} which contains dc bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When using the low-loss (R series/R Char.) in a high-frequency and high-voltage circuit, be sure to read the instructions in item 4.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature And Self-Generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 300kHz. The applied voltage load should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-k of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. otherwise, accurate measurement cannot be ensured.)

3. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

4. Load Reduction and Self-generated Heat During Application of High-frequency and High-voltage

Due to the low self-heating characteristics of low dissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of B characteristic capacitors. However, in case the self heating temperature is 20°C under a high-frequency voltage whose peak-to-peak value equals the capacitor's rated voltage, the capacitor's power consumption may exceed it's allowable electric power. Therefore, when using the Low loss series in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the Vp-p values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25°C does not exceed the value specified in Table 1. As shown in Fig. 2, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25°C, please contact our sales representatives or product engineers.

[Table 1]	Allowable	conditions at	high frequency
-----------	-----------	---------------	----------------

Series	DC rated Voltage	Allowable conditions at High frequency *2		Capacitor's ambient
		Applied voltage (MAX)	Self-heating temp. (25°C ambient temp.)*1	temp.
R series	1KV	800Vp-p	20°C Max	
		1000Vp-p	5°C Max	
	2KV	1400Vp-p	20°C Max	
		2000Vp-p	5°C Max	
	3.15KV	1600Vp-p	20°C Max	
		3150Vp-p	5°C Max	

- * 1 Fig. 1 shows the relationship between the applied voltage and the allowable self-heating temperature regarding 1 to 3.15KV rated voltage of the low loss R series characteristic./ Fig 2. shows self heating temperature for the low loss R series characteristic
- * 2 Fig. 3 shows reference data on the allowable voltage-frequency characteristic for a sine wave voltage.

Failure to follow the above cautions (items 1to 4) may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

Fig 1: Relationship Between Applied Voltage and Self-heating Temperature (R series) (Allowable Self-heating Temp. at 25 °C Ambient Temp.)

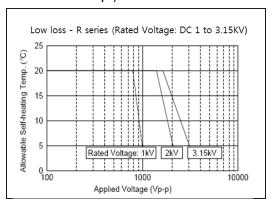


Fig 2 : Dependence of Self-heating Temperature on Ambient Temperature at 25°C. (R series)

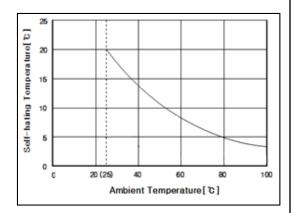
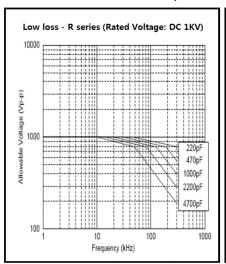
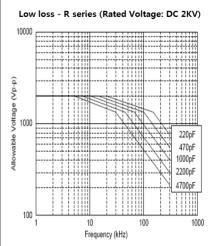
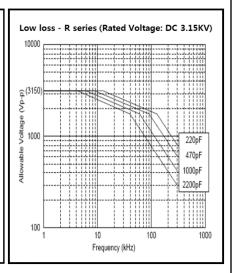





Fig 3-1 : Allowable Voltage (Sine Wave Voltage) – Frequency Characteristics (At Ambient Temperature of 85 or less)

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the self heating temperature is not higher than the value specified in Table 1.